Bottomonium spectral functions at T>0

A signal for the quark-gluon plasma from the lattice

M.P. LOMBARDO	FRASCATI
D.K. SINCLAIR	ARGONNE
G. AARTS/C.R. ALLTON	SWANSEA
TIM HARRIS/S.M. RYAN	TRINITY
S. KIM	SEJONG
	UTAH
JI. SKULLERUD	MAYNOOTH

Motivation

- Dissocation of heavy-quark bound states in a deconfined medium contributes to suppression of quarkonium yield in heavy-ion collions.
- Can suppression patterns provide a thermometer for quark-gluon plasma?
- Competing effects such as statistical recombination less pronounced for heavier quarks.
- Lattice can complement other approaches such as analytical weak-coupling results from effective field theories and potential models.

Motivation

- Dissocation of heavy-quark bound states in a deconfined medium contributes to suppression of quarkonium yield in heavy-ion collions.
- Can suppression patterns provide a thermometer for quark-gluon plasma?
- Competing effects such as statistical recombination less pronounced for heavier quarks.
- Lattice can complement other approaches such as analytical weak-coupling results from effective field theories and potential models.

Earlier results from numerical simulations [FASTSUM, 1109.4496] from previous generation of $N_f = 2$ ensembles:

- concluded the survival of the 1S state above the crossover temperature T_c ,
- indicated melting of P-wave directly above T_c,

G. Aarts, this session

while it was observed from the spectral functions:

• that the 2S-states were suppressed at $T \approx 1.7T_c$.

N_{f}	2	2+1
Light	Wil/HamWu	Clover
NRQCD	$O(v^4)$	$O(v^4)$
Gauge	Symanzik	Symanzik
as	0.16 fm	0.12fm
$1/\mathtt{a}_{ au}$	7.35 GeV	5.67GeV
a_s/a_τ	6	3.5
$m_{\pi}/m_{ ho}$	0.55	0.45
L/a_s	12	24
T_{max}	2 T _c	1.9T _c
[Tr:	inLat,hep-lat/0510016]	[HadSpec,0803.3960]

	•	0.1
Nf	2	2+1
Light	Wil/HamWu	Clover
NRQCD	$0(v^4)$	$O(v^4)$
Gauge	Symanzik	Symanzik
as	0.16fm	0.12fm
$1/\mathtt{a}_{ au}$	7.35GeV	5.67GeV
$a_s/a_{ au}$	6	3.5
$m_{\pi}/m_{ ho}$	0.55	0.45
L/a_s	12	24
T_{max}	2 T _c	$1.9 T_c$
[TrinLa	t,hep-lat/0510016]	[HadSpec,0803.3960]

Non-relativistic QCD (NRQCD) on the lattice

- Requires only $m_b \gg T$, cf. weak-coupling approaches which require ordering of other relevant scales.
- \checkmark Tuning of \hat{m}_b via dispersion relation due to state-independent energy shift in NRQCD.

Non-relativistic QCD (NRQCD) on the lattice

- Requires only $m_b \gg T$, cf. weak-coupling approaches which require ordering of other relevant scales.
- \checkmark Tuning of \hat{m}_b via dispersion relation due to state-independent energy shift in NRQCD.

Modification of correlators at T > 0

• P-wave correlator exhibits stronger *T*-dependence.

? Lighter bottomonium more spatially extended and color-Debye screening more effective.

Non-relativistic quarks at ${\cal T}>0$

$$G(\tau) = \int_0^\infty \frac{d\omega}{2\pi} \frac{\cosh(\omega\tau - \omega/2T)}{\sinh(\omega/2T)} \rho(\omega) \longrightarrow$$

Non-relativistic quarks at T>0

$$G(\tau) = \int_0^\infty \frac{\mathrm{d}\omega}{2\pi} \frac{\cosh(\omega\tau - \omega/2T)}{\sinh(\omega/2T)} \rho(\omega) \longrightarrow \int_{-\omega_0}^\infty \frac{\mathrm{d}\omega}{2\pi} e^{-\omega\tau} \rho(\omega + \omega_0)$$

$$G(\tau) = \int_0^\infty \frac{\mathrm{d}\omega}{2\pi} \frac{\cosh(\omega\tau - \omega/2T)}{\sinh(\omega/2T)} \rho(\omega) \longrightarrow \int_{-\omega_0}^\infty \frac{\mathrm{d}\omega}{2\pi} e^{-\omega\tau} \rho(\omega + \omega_0)$$

- The *T*-independence of the kernel reflects the fact that the heavy quark is not in thermal equilibrium with the medium.
- No constant contribution to correlator.

$$G(\tau) = \int_0^\infty \frac{\mathrm{d}\omega}{2\pi} \frac{\cosh(\omega\tau - \omega/2T)}{\sinh(\omega/2T)} \rho(\omega) \longrightarrow \int_{-\omega_0}^\infty \frac{\mathrm{d}\omega}{2\pi} e^{-\omega\tau} \rho(\omega + \omega_0)$$

- The *T*-independence of the kernel reflects the fact that the heavy quark is not in thermal equilibrium with the medium.
- No constant contribution to correlator.
- The continuum hadronic spectral function for free quarks is known:

$$\rho_{\rm free}(\omega) \propto \omega^{\alpha} \Theta(\omega) \implies G_{\rm free}(\tau) \propto \frac{e^{-\omega_0 \tau}}{\tau^{\alpha+1}}, \qquad \alpha_S = \frac{1}{2}, \ \alpha_P = \frac{3}{2}.$$

[Burnier, Laine, Vepsäläinen, '07]

$$G(\tau) = \int_0^\infty \frac{\mathrm{d}\omega}{2\pi} \frac{\cosh(\omega\tau - \omega/2T)}{\sinh(\omega/2T)} \rho(\omega) \longrightarrow \int_{-\omega_0}^\infty \frac{\mathrm{d}\omega}{2\pi} e^{-\omega\tau} \rho(\omega + \omega_0)$$

- The *T*-independence of the kernel reflects the fact that the heavy quark is not in thermal equilibrium with the medium.
- No constant contribution to correlator.
- The continuum hadronic spectral function for free quarks is known:

$$\rho_{\rm free}(\omega) \propto \omega^{\alpha} \Theta(\omega) \implies G_{\rm free}(\tau) \propto \frac{e^{-\omega_0 \tau}}{\tau^{\alpha+1}}, \qquad \alpha_S = \frac{1}{2}, \ \alpha_P = \frac{3}{2}.$$

[Burnier, Laine, Vepsäläinen, '07]

$$G(\tau) = \int_0^\infty \frac{\mathrm{d}\omega}{2\pi} \frac{\cosh(\omega\tau - \omega/2T)}{\sinh(\omega/2T)} \rho(\omega) \longrightarrow \int_{-\omega_0}^\infty \frac{\mathrm{d}\omega}{2\pi} e^{-\omega\tau} \rho(\omega + \omega_0)$$

- The *T*-independence of the kernel reflects the fact that the heavy quark is not in thermal equilibrium with the medium.
- No constant contribution to correlator.
- The continuum hadronic spectral function for free quarks is known:

$$\rho_{\rm free}(\omega) \propto \omega^{\alpha} \Theta(\omega) \implies G_{\rm free}(\tau) \propto \frac{e^{-\omega_0 \tau}}{\tau^{\alpha+1}}, \qquad \alpha_S = \frac{1}{2}, \ \alpha_P = \frac{3}{2}.$$

[Burnier, Laine, Vepsäläinen, '07]

 We might expect such 'almost-free' behaviour above the dissocation temperatures. To this end, define:

$$\gamma_{\text{eff}}(\tau) \equiv -\tau \frac{G'(\tau)}{G(\tau)} \stackrel{G=G_{\text{free}}}{=} \omega_0 \tau + \alpha + 1.$$

Given finite stochastic correlator data the inverse Laplace transform is an ill-posed problem. Resort to Bayesian inference of most plausible spectral function.

Asakawa, Hatsuda, Nakahara '02

- Dependence on prior information or default model must be tested.
- Use Bryan's algorithm.

Preliminary zero-T spectral function

Given finite stochastic correlator data the inverse Laplace transform is an ill-posed problem. Resort to Bayesian inference of most plausible spectral function.

```
Asakawa, Hatsuda, Nakahara '02
```

- Dependence on prior information or default model must be tested.
- Use Bryan's algorithm.

Preliminary zero-T spectral function

Given finite stochastic correlator data the inverse Laplace transform is an ill-posed problem. Resort to Bayesian inference of most plausible spectral function.

```
Asakawa, Hatsuda, Nakahara '02
```

- Dependence on prior information or default model must be tested.
- Use Bryan's algorithm.

Temperature dependence: S-waves

• $\Upsilon(2S)$ peak is indiscernible at higher T, while ground state peak is still present up to highest temperatures, consistent with previous study.

Temperature dependence: P-waves

Temperature dependence: P-waves

• Ground state $\chi_{b1}(1P)$ peak disappears directly above T_c .

T/T_c	Single exponential $\chi^2/{ m dof}$
0.76	0.82
0.84	0.80
0.95	5.36
1.08	20.2
1.26	122
1.52	$O(10^{5})$

• Ground state $\chi_{b1}(1P)$ peak disappears directly above T_c .

Temperature dependence: P-waves

- Ground state $\chi_{b1}(1P)$ peak disappears directly above T_c .
- Direct analysis of correlators supports interpretation of 'nearly-free' quark dynamics.

We have seen...

- MEM reproducing zero-temperature S-wave energies.
- Spectral functions at finite T signal of 1P above T_c .
- Direct analysis of correlators suggest consistent picture.
- Survival of 1S peak up to at least $1.9T_c$, while 2S peak broadens and is suppressed.
- Consistency between spectral functions from first and second generation ensembles.

We have seen...

- MEM reproducing zero-temperature S-wave energies.
- Spectral functions at finite T signal of 1P above T_c.
- Direct analysis of correlators suggest consistent picture.
- Survival of 1S peak up to at least $1.9T_c$, while 2S peak broadens and is suppressed.
- Consistency between spectral functions from first and second generation ensembles.

To do:

- Thorough investigation of default model dependence.
- Examine momentum-dependence of peak positions.
- Investigate new approaches for constructing spectral function: extended search space...
- Tuning new generation of ensembles with $\xi = 7$.

Backup slides

Free lattice spectral functions

$$\rho_{\rm P}(\omega) = \frac{4\pi N_c}{N_s^3} \sum_{\boldsymbol{p}} \hat{p}^2 \delta\left(\omega - 2E_{\boldsymbol{p}}\right)$$

Bottomonium at T > 0 11 / 9

Free lattice spectral functions

$$\rho_{\rm S}(\omega) = \frac{4\pi N_c}{N_s^3} \sum_{\boldsymbol{p}} \delta\left(\omega - 2E_{\boldsymbol{p}}\right)$$

Bottomonium at T > 0 12 / 9

