Quarkonium correlation functions at finite temperature in the charm to bottom region

H. Ohno in collaboration with O. Kaczmarek *Bielefeld University*

Lattice 2013

Johannes Gutenberg-Universität Mainz, Mainz, Germany August 2, 2013

Quarkonium in hot medium

N. Brambilla et al., EPJ C71 (2011) 1534

Sequential Bottomonium suppression @ LHC \rightarrow

Investigating dissociation temperatures of charmonia and bottomonia by first principle lattice QCD calculation is important

H. Ohno Lattice 2013

Meson correlator & spectral function

Recent lattice studies

- Charmonia
 - Quenched QCD
 - Both S- and P-wave states are dissociated above $\sim 1.5T_c$.
 - H.-T. Ding et al., PRD 86 (2012) 014509

- Bottomonia
 - 2-flavor, nonrelativistic QCD
 - Y has no temperature dependence up to $2.09T_c$.
 - χ_{b0} is sensitive to the presence of thermal medium immediately above T_c .
 - Momentum dependence is effectively
 - temperature independent.

H. Ohno Lattice 2013

Reconstructed correlator

$$G_{\rm rec}(\tau, T; T') \equiv \int_0^\infty d\omega \rho(\omega, T') K(\omega, \tau, T)$$
$$\frac{G(\tau, T)}{G_{\rm rec}(\tau, T; T')} \quad \text{equals to unity at all } \tau$$
if the spectral function doesn't vary with temperature
S. Datta *et al.*, PRD 69 (2004) 094507

$$\frac{\cosh[\omega(\tau - N_{\tau}/2)]}{\sinh[\omega N_{\tau}/2]} = \sum_{\substack{\tau' = \tau; \Delta \tau' = N_{\tau}}}^{N_{\tau}' - N_{\tau} + \tau} \frac{\cosh[\omega(\tau' - N_{\tau}'/2)]}{\sinh[\omega N_{\tau}'/2]} \\
T = 1/(N_{\tau}a) \qquad N_{\tau}' = mN_{\tau} \qquad m = 1, 2, 3, \cdots \\
G_{\rm rec}(\tau, T; T') = \sum_{\substack{\tau' = \tilde{\tau}; \Delta \tau' = N_{\tau}}}^{N_{\tau}' - N_{\tau} + \tau} G(\tau', T') \\
H.-T. Ding et al., PRD 86 (2012) 014509$$

H. Ohno Lattice 2013

Screening mass

2+1 flavor, HISQ \rightarrow Y. Maezawa's talk on Tue. at 14:00

H. Ohno Lattice 2013

Simulation setup

- Standard Wilson gauge & O(a)-improved Wilson quark actions
- In quenched QCD
- $\beta = 7.192$, $r_0 = 0.49$ fm \rightarrow a = 0.0190 fm (a⁻¹ = 10.4 GeV)
- On 96³ x N_{τ} isotropic lattices

N_{τ}	48	32	28	24	
T/T_c	0.80	1.2	1.4	1.6	$T_c \simeq 270 \text{ MeV}$
$N_{\rm conf}$	170	219	193	220	_

8

5

4

3

• 6 κ values corresponding to the vector meson masses in the range from J/ Ψ to Y

• Momentum: $\vec{pa} = \frac{2\pi k}{N_{\sigma}}$ $|\vec{p}| \simeq 0.7 \sim 2.0 \text{ GeV}$

$$\vec{k} = (0,0,0), \ (1,0,0), \ (1,1,0), \ (2,0,0), \ (3,0,0)$$

H. Ohno Lattice 2013 124 0.126 0.128 0.13 0.132 κ

Screening mass: S-wave

 $M_{\rm scr}$ increases monotonically as increasing temperature. Only small temperature dependence for bottom.

> H. Ohno Lattice 2013

Screening mass: P-wave

 $M_{\rm scr}$ increases as increasing temperature above $1.4T_c$. Only small temperature dependence for bottom. $M_{\rm scr}$ for χ_{c0} at $1.2T_c$ is less than unity.

Reconstructed correlator (1.67_c): S-wave, p=0

V channel is strongly enhanced at large τ/a .

Data for smaller quark mass has larger modification at large τ/a . PS and V channels have quite different behavior from each other.

Reconstructed correlator (1.67_c): S-wave, p=0

PS and V channels have similar behavior to each other in this case. Most part of the strong enhancement at large τ/a for V channel comes from the zero mode contribution.

H. Ohno Lattice 2013

Reconstructed correlator (1.67_c): P-wave, p=0

Data at large τ/a is strongly enhanced.

Quark mass dependence at small τ/a is small, while larger quark mass data has larger modification at the largest τ/a .

Reconstructed correlator (1.67_c): P-wave, p=0

Most part of the strong enhancement at large τ/a comes from the zero mode contribution. AV channel has quite small quark mass dependence.

H. Ohno Lattice 2013

Reconstructed correlator (1.67_c): S-wave, p≠0

PS channel for charm with larger momentum is enhanced more strongly at large τ/a . PS and V channels for bottom have quite small momentum dependence.

H. Ohno Lattice 2013

Reconstructed correlator (1.67_c): S-wave, p≠0

PS and V channels for charm have still small momentum dependence. PS and V channels for bottom have no clear momentum dependence.

H. Ohno Lattice 2013

Reconstructed correlator (1.67_c): P-wave, p≠0

Momentum dependence is small for S channel. Data at large τ/a is strongly enhanced.

Reconstructed correlator (1.67_c): P-wave, p≠0

S and AV channels for charm have small momentum dependence.

S and AV channels for bottom have quite small momentum dependence at the largest τ/a .

H. Ohno Lattice 2013

Conclusions

- Meson correlation functions are studied
 - from $0.8T_c$ to $1.6T_c$
 - In the region of the quark mass for charmonia to bottomonia
 - at both vanishing and finite momenta
- Screening mass
 - increases as temperature increases
 - has only small temperature dependence for the bottom sector
- Temporal correlator
 - for V, S and AV channels at vanishing momentum have large zero mode contribution above T_c
 - for S-wave states have larger temperature effect for small quark mass at large τ/a , even after the zero mode contribution is subtracted
 - PS channel for charm sector has momentum dependent zero mode contribution
 - for the charm sector has some momentum dependence
 - for the bottom sector is stable for varying momentum

Outlook

- Finer and larger lattices
 - cutoff and volume dependences
 - continuum limit
- Estimating transport coefficients
- Investigating spectral functions directly
 - Bayesian analysis
- Investigating exited states
 - variational analysis

End