Phase transitions in dense 2-colour QCD

Jon-Ivar Skullerud with Tamer Boz, Seamus Cotter, Leonard Fister Pietro Giudice, Simon Hands [PRD **87** 034507 (2013), EPJA **49** 87 (2013)]

NUI Maynooth

Lattice 2013, Mainz, 2 August 2013

Outline

Background QC₂D vs QCD Lattice formulation

Phase transitions Superfluid to normal Deconfinement

Gluon propagator

Summary

See talk by Seamus Cotter at 1830 for equation of state

Summarv

QC₂D vs QCD Lattice formulatior

Background

- A plethora of phases at high μ , low T
- Based on models and perturbation theory

Indirect approach

Study QCD-like theories without a sign problem

- Generic features of strongly interacting systems at $\mu \neq 0$
- Check on model calculations, functional methods

QC₂D vs QCD Lattice formulation

QC_2D vs QCD

- Baryons are bosons (diquarks); superfluid 'nuclear matter'
- Scalar diquark is pseudo-Goldstone (degenerate with pion)
- Onset transition at $\mu_q = m_\pi/2$, not $m_N/3$

QC₂D vs QCD Lattice formulation

QC_2D vs QCD

- Baryons are bosons (diquarks); superfluid 'nuclear matter'
- Scalar diquark is pseudo-Goldstone (degenerate with pion)
- Onset transition at $\mu_q = m_\pi/2$, not $m_N/3$

Phase diagram

- Superfluid phase for $\mu > m_{\pi}/2$: BEC \longrightarrow BCS?
- Exotic phases: quarkyonic, spatially varying?
- Deconfinement at high density, shape of deconfinement line?

QC₂D vs QCD Lattice formulation

QC_2D vs QCD

- Baryons are bosons (diquarks); superfluid 'nuclear matter'
- Scalar diquark is pseudo-Goldstone (degenerate with pion)
- Onset transition at $\mu_q = m_\pi/2$, not $m_N/3$

Phase diagram

- Superfluid phase for $\mu > m_{\pi}/2$: BEC \longrightarrow BCS?
- Exotic phases: quarkyonic, spatially varying?
- Deconfinement at high density, shape of deconfinement line?

Gluodynamics — SU(2) and SU(3) very similar?

- Effects of deconfinement on gluon propagation?
- ► Gap equation with effective or one-gluon interaction used to determine superconducting gap → more realistic input?

QC₂D vs QCD Lattice formulation

Lattice formulation

We use Wilson fermions:

- Correct symmetry breaking pattern, Goldstone spectrum
- $N_f < 4$ needed to guarantee continuum limit
- No problems with locality, fourth root trick
- Chiral symmetry buried at bottom of Fermi sea

QC₂D vs QCD Lattice formulation

Lattice formulation

We use Wilson fermions:

- Correct symmetry breaking pattern, Goldstone spectrum
- $N_f < 4$ needed to guarantee continuum limit
- No problems with locality, fourth root trick
- Chiral symmetry buried at bottom of Fermi sea

 $S = \bar{\psi}_1 \mathcal{M}(\mu) \psi_1 + \bar{\psi}_2 \mathcal{M}(\mu) \psi_2 - \mathbf{J} \bar{\psi}_1 (C\gamma_5) \tau_2 \bar{\psi}_2^{\mathsf{T}} + \mathbf{J} \psi_2^{\mathsf{T}} (C\gamma_5) \tau_2 \psi_1$ $\gamma_5 \mathcal{M}(\mu) \gamma_5 = \mathcal{M}^{\dagger}(-\mu), \quad C\gamma_5 \tau_2 \mathcal{M}(\mu) C\gamma_5 \tau_2 = -\mathcal{M}^*(\mu)$

Lattice formulation

We use Wilson fermions:

- Correct symmetry breaking pattern, Goldstone spectrum
- $N_f < 4$ needed to guarantee continuum limit
- No problems with locality, fourth root trick
- Chiral symmetry buried at bottom of Fermi sea

 $S = \bar{\psi}_1 \mathcal{M}(\mu) \psi_1 + \bar{\psi}_2 \mathcal{M}(\mu) \psi_2 - J \bar{\psi}_1 (C \gamma_5) \tau_2 \bar{\psi}_2^T + \bar{J} \psi_2^T (C \gamma_5) \tau_2 \psi_1$ $\gamma_5 \mathcal{M}(\mu) \gamma_5 = \mathcal{M}^{\dagger}(-\mu), \quad C \gamma_5 \tau_2 \mathcal{M}(\mu) C \gamma_5 \tau_2 = -\mathcal{M}^*(\mu)$

Diquark source $J \equiv \kappa j$ introduced to

- lift low-lying eigenmodes in the superfluid phase
- study diquark condensation without uncontrolled approximations

QC₂D vs QCD Lattice formulation

Simulation parameters

 μ -scans, fixed T

$N_{ au}$	T (MeV)	μ a	ja
24	47	0.25-1.10	0.02, 0.04 (0.03)
24	47	0.30-0.90	0.04
16	70	0.30-0.90	0.04
12	94	0.20-0.90	0.02, 0.04
8	141	0.10-0.90	0.02, 0.04
	N _τ 24 24 16 12 8	$\begin{array}{c c} N_{\tau} & T \ ({\rm MeV}) \\ \hline 24 & 47 \\ 24 & 47 \\ 16 & 70 \\ 12 & 94 \\ 8 & 141 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

250–500 trajectories used for each μ .

QC₂D vs QCD Lattice formulation

Simulation parameters

T-scans, fixed μ

All simulations done on $16^3 imes N_{ au}$ lattices

μ a	ja	$N_{ au}$
0.0	0.0	4–10
0.35	0.02	4–13, 16
	0.04	4-12, 14, 16
0.40	0.02	5–13, 16
	0.04	4–13
0.50	0.02	6-12, 16
	0.04	4-16, 18, 20
0.60	0.02	6-12, 14, 16
	0.04	6–16, 20

In addition, 300 trajectories were generated at ja=0.03, 0.05 for $N_{ au}=9, 10, 11$ at all $\mu>0$.

Superfluid to normal Deconfinement

Diquark condensate — μ -scan

Results shown are for linear extrapolation Power law $\langle qq \rangle = Aj^{\alpha}$ works for $\mu a \lesssim 0.4$, with $\alpha = 0.85 - 0.5$.

• BCS scaling $\langle qq \rangle \sim \mu^2$ for 0.35 $\lesssim \mu a \lesssim 0.7$

• Melted at
$$T = 141 \text{MeV}$$

 $(N_{\tau} = 8)$

Superfluid to normal Deconfinement

Diquark condensate — μ -scan

Results shown are for linear extrapolation Power law $\langle qq \rangle = Aj^{\alpha}$ works for $\mu a \lesssim 0.4$, with $\alpha = 0.85 - 0.5$.

- ► BCS scaling $\langle qq \rangle \sim \mu^2$ for 0.35 $\lesssim \mu a \lesssim 0.7$
- ► Melted at T = 141MeV (N_τ = 8)
- New transition for $\mu a \gtrsim 0.7?$
- Melting for $N_{ au} = 12, \mu a \gtrsim 0.7?$

 $N_{ au} = 16$ results are very close to $N_{ au} = 24$ results.

Superfluid to normal Deconfinement

Superfluid to normal transition

 $j \rightarrow 0$ extrapolation not fully under control Linear form used here

Transition temperatures from inflection points (and $j \rightarrow 0$) $a\mu \mid T_s \text{ (MeV)}$ 0.35 82(27) 0.40 94(9) 0.50 93(6) 0.60 93(7) Remarkably constant!

Superfluid to normal Deconfinement

Deconfinement transition

Polyakov loop L requires renormalisation,

$$L_R = e^{-F_q/T} = e^{-(F_0 + \Delta F)/T} = Z_L^{N_\tau} L_0$$

We use two schemes to determine $Z_L = \exp(-a\Delta F)$,

Scheme A
$$L_R(T = \frac{1}{4a}, \mu = 0) = 1$$
,
Scheme B $L_R(T = \frac{1}{4a}, \mu = 0) = 0.5$.

We determine the deconfinement temperature (crossover region) from the inflection point (linear region) of L_R

Superfluid to normal Deconfinement

Deconfinement transition

Estimates from Scheme B, encompassing Scheme A

μ a	T _d a	T_d (MeV)
0.0	0.193(20)	217(23)
0.35	0.140-0.220	157–247
0.40	0.108-0.200	121–225
0.50	0.080-0.200	90–225
0.60	0.060-0.135	67–152

Scheme dependence \longleftrightarrow broad crossover?

Gluon propagator

Essential ingredient in gap equation

$$S^{-1}(p) = S_0^{-1}(p) + Z_2 \int d^4 q \Gamma_\mu(p,q) D_{\mu
u}(q) S(p-q) \gamma_
u$$

used to determine dynamical fermion mass and superfluid/superconducting gap

- Link to functional methods (DSE, FRG)
- Electric gluon may signal deconfinement transition

Tensor structure in medium

$$\begin{split} D_{\mu\nu}(\overrightarrow{q},q_{0}) &= P_{\mu\nu}^{T} D_{M}(\overrightarrow{q}^{2},q_{0}^{2}) + P_{\mu\nu}^{E} D_{E}(\overrightarrow{q}^{2},q_{0}^{2}) + \xi \frac{q_{\mu}q_{\nu}}{(q^{2})^{2}} \\ P_{\mu\nu}^{M}(\overrightarrow{q},q_{0}) &= (1-\delta_{0\mu})(1-\delta_{0\nu})(\delta_{\mu\nu}-\frac{q_{\mu}q_{\nu}}{\overrightarrow{q}^{2}}), \\ P_{\mu\nu}^{E}(q_{0},\overrightarrow{q}) &= (\delta_{\mu\nu}-\frac{q_{\mu}q_{\nu}}{q^{2}}) - P_{\mu\nu}^{M}(q_{0},\overrightarrow{q}). \end{split}$$

Gluon propagator: μ -scans, $N_{\tau} = 24$

Gluon propagator: μ -scans, $N_{\tau} = 8$

- Very little volume dependence
- No *j*-dependence observed
- All modes screened at high µ, low
 T:
 Weak-coupling theory says static
 - D_M is unscreened
- Static magnetic gluon not screened at high T

Gluon propagator: *T*-scan, $\mu a = 0.5$

Gluon propagator fits

2-parameter fit:

$$D_k^{
m fit}(q^2) \;=\; rac{\Lambda^2 (q^2 + \Lambda^2 a_k)^{-b_k}}{(q^2 + \Lambda^2)^2}$$

with
$$k = M, E$$
 and $\Lambda a = 0.999(3)$ from $\mu = j = 0$ fit

T-scan

μ -scans

Summary

Summary

Evidence for three phases/regions

- Vacuum/hadronic phase below $\mu_o = m_\pi/2$, low T
- BCS/quarkyonic for intermediate μ , low T
- Deconfined/QGP matter at high T

Summary

Evidence for three phases/regions

- Vacuum/hadronic phase below $\mu_o = m_\pi/2$, low T
- BCS/quarkyonic for intermediate μ , low T
- Deconfined/QGP matter at high T
- Superfluid to normal $T_s(\mu)$ remarkably flat above μ_o
- Deconfinement crossover $T_d(\mu)$ decreasing with μ
- Situation at very high μ unclear
- Possible deconfined superfluid region?

Summary

Evidence for three phases/regions

- Vacuum/hadronic phase below $\mu_o = m_\pi/2$, low T
- BCS/quarkyonic for intermediate μ , low T
- Deconfined/QGP matter at high T
- Superfluid to normal $T_s(\mu)$ remarkably flat above μ_o
- Deconfinement crossover $T_d(\mu)$ decreasing with μ
- Situation at very high μ unclear
- Possible deconfined superfluid region?
- Both electric and magnetic gluon screened at high μ , low T
- Static magnetic gluon not screened at high T

Outlook

- Attempt O(2) scaling fit for superfluid to normal transition?

 → Requires several larger lattice volumes
- Additional fit functions for gluon propagator in progress
- Quark propagators in progress
- Smaller quark mass at fixed lattice spacing in progress
- Finer lattice at same quark mass in progress

Energy density / EOS: See talk by Seamus Cotter at 1830