*G*₂-QCD: Spectroscopy and the phase diagram at zero temperature and finite density

Björn H. Wellegehausen

Theoretisch-Physikalisches Institut Research Training Group (1523) 'Quantum and Gravitational Fields' FSU Jena

with Axel Maas, Lorenz von Smekal and Andreas Wipf

Lattice 2013, Mainz, 02.08.2013

$$\mathcal{Z}_{\mathsf{GC}}(\mathcal{T},\mu) = \int \mathcal{D}\mathcal{U} \, \mathcal{D} \, \Psi \mathcal{D} \bar{\Psi} \, e^{-S_{\mathcal{E}}[\mathcal{U},\Psi,\bar{\Psi}] - \mu N[\Psi,\bar{\Psi}]}$$

$\det D[\mathcal{U},\mu] \in \mathbb{C} \quad \stackrel{\mathcal{U} \in SU(3)}{\Longrightarrow} \quad \text{Sign problem}$

$$\begin{aligned} \mathcal{Z}_{\mathsf{GC}}(T,\mu) &= \int \mathcal{D}\mathcal{U} \, \mathcal{D} \, \Psi \mathcal{D} \bar{\Psi} \, e^{-S_{\mathcal{E}}[\mathcal{U},\Psi,\bar{\Psi}] - \mu N[\Psi,\bar{\Psi}]} \\ &= \int \mathcal{D}\mathcal{U} \, \det \mathcal{D}[\mathcal{U},\mu] e^{-S_{\mathcal{E}}[\mathcal{U}]} \end{aligned}$$

 $\det D[\mathcal{U},\mu]\in\mathbb{C} \quad \stackrel{\mathcal{U}\in SU(3)}{\Longrightarrow} \quad {
m Sign} \,\, {
m problem}$

$$\begin{split} \mathcal{Z}_{\mathsf{GC}}(\mathsf{T},\mu) &= \int \mathcal{D}\mathcal{U} \, \mathcal{D} \, \Psi \mathcal{D} \bar{\Psi} \, e^{-S_{\mathcal{E}}[\mathcal{U},\Psi,\bar{\Psi}] - \mu N[\Psi,\bar{\Psi}]} \\ &= \int \mathcal{D}\mathcal{U} \, \det \mathcal{D}[\mathcal{U},\mu] e^{-S_{\mathcal{E}}[\mathcal{U}]} \end{split}$$

 $\det D[\mathcal{U},\mu] \in \mathbb{C} \quad \stackrel{\mathcal{U} \in SU(3)}{\Longrightarrow} \quad \text{Sign problem}$

$$\begin{split} \mathcal{Z}_{\mathsf{GC}}(\mathsf{T},\mu) &= \int \mathcal{D}\mathcal{U} \, \mathcal{D} \, \Psi \mathcal{D} \bar{\Psi} \, e^{-S_{\mathsf{E}}[\mathcal{U},\Psi,\bar{\Psi}] - \mu N[\Psi,\bar{\Psi}]} \\ &= \int \mathcal{D}\mathcal{U} \, \det \mathcal{D}[\mathcal{U},\mu] e^{-S_{\mathsf{E}}[\mathcal{U}]} \end{split}$$

 $\det D[\mathcal{U},\mu] \in \mathbb{C} \quad \stackrel{\mathcal{U} \in \mathit{SU}(3)}{\Longrightarrow} \quad \text{Sign problem}$

What is G_2 -QCD ?

Replace SU(3) by the exceptional Lie group G_2

 $\det D[\mathcal{U},\mu] \geq 0$

Other QCD-like theories without sign problem: SU(2)-QCD (two-color QCD), adjoint QCD \dots

Investigate the full phase diagram of a gauge theory with fermionic baryons and fundamental quarks with Monte-Carlo methods

SU(3) is a subgroup of G_2 : G_2 -QCD shares many important features with QCD

Is G_2 -QCD really a QCD-like theory ?

What is the contribution of fermionic baryons to the G_2 -QCD phase diagram ? Can we learn something about the QCD sign problem ?

2 G_2 -QCD in the continuum

Spectroscopy

Exceptional confinement

- G_2 is the smallest Lie-group which is simply connected and has a trivial center
- All representations of G_2 are real
- The group has rank 2 and hence possesses two fundamental representations

(7) \sim quarks, (14) \sim gluons

• Similar as in SU(3) two or three quarks can build a colour singlet

$$(7)\otimes(7)=(1)\oplus\cdots$$
, $(7)\otimes(7)\otimes(7)=(1)\oplus\cdots$

• In contrast gluons can screen the colour charge of a single static quark

$$(7)\otimes(14)\otimes(14)\otimes(14)=(1)\oplus\cdots$$

In G₂ gluodynamics...

• the Polyakov loop is no longer an order parameter for confinement ...

30

- ... but it serves as an approximate order parameter which changes rapidly at the phase transition and is small (but non-zero) in the confining phase
- First order confinement deconfinement phase transition

G_2 -QCD in the continuum

Lagrange density for
$$N_f$$
 (Dirac) flavour G_2 -QCD

$$\mathcal{L}_{QCD} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \bar{\Psi} (i\not D - m + i\gamma_0\mu) \Psi$$

 $\bullet\,$ Decompose the Dirac spinor $\Psi=\chi+\operatorname{i}\eta$ into Majorana spinors

$$\mathcal{L}_{\text{matter}} = \bar{\Psi} \left(i \not \!\!\!D - m + i \gamma_0 \mu \right) \Psi = \begin{pmatrix} \bar{\chi} \\ \bar{\eta} \end{pmatrix} \begin{pmatrix} i \not \!\!\!D - m & i \gamma_0 \mu \\ -i \gamma_0 \mu & i \not \!\!\!\!D - m \end{pmatrix} \begin{pmatrix} \chi \\ \eta \end{pmatrix}$$

• For vanishing baryon chemical potential $\mu = 0$

$$\mathcal{L}_{matter} = \overline{\lambda} \left(i \not \!\!\! D - m \right) \lambda,$$

where $\lambda = (\chi, \eta)$ is a 2N_f component Majorana spinor.

Chiral symmetry of G_2 -QCD

 $\textit{U}(2\textit{N}_{f})_{L=R^{*}}=\textit{SU}(2\textit{N}_{f})_{L=R^{*}}\otimes\textit{U}(1)_{A}/\mathbb{Z}(2\textit{N}_{f})$

$N_{\rm f} = 1$

- Chiral symmetry $SU(2)_{L=R^*} \otimes \mathbb{Z}(2) \longrightarrow U(1)_B \otimes \mathbb{Z}(2)$
- 2 (would-be) Goldstone bosons

$$d(0^{+-}) = \bar{\chi}\gamma_5\eta = \bar{\Psi}^{\mathsf{C}}\gamma_5\Psi - \bar{\Psi}\gamma_5\Psi^{\mathsf{C}}$$
$$d(0^{++}) = \frac{1}{\sqrt{2}}(\bar{\chi}\gamma_5\chi - \bar{\eta}\gamma_5\eta) = \bar{\Psi}^{\mathsf{C}}\gamma_5\Psi + \bar{\Psi}\gamma_5\Psi^{\mathsf{C}}$$

• Goldstone bosons carry baryon charge $n_q = 2$, i.e. they couple to baryon chemical potential

In contrast to QCD . . .

... the Goldstone bosons of chiral symmetry breaking are scalar baryons (diquarks) instead of pseudoscalar mesons

Mesons
$$n_q = 0$$

Name	Operator	Pos.	Spin	Colour	Flavour	J	Р
η	$\overline{u}\gamma_5 u$	S	A	S	S	0	-
f	นิน	S	A	S	S	0	+
ω	$ar{u}\gamma_{\mu}u$	S	S	S	A	1	-
h	$ar{u}\gamma_5\gamma_\mu u$	S	S	S	А	1	+
π	$ar{u}\gamma_5 d$	S	A	S	S	0	-
а	ūd	S	A	S	S	0	+
ρ	$ar{u}\gamma_\mu d$	S	S	S	A	1	-
b	$\bar{u}\gamma_5\gamma_\mu d$	S	S	S	A	1	+

 $(7)\otimes(7)=(1)\oplus\ldots$

Baryons
$$n_q = 1$$

Name	Operator	Pos.	Spin	Col.	Flav.	J	P
Hybrid	$\epsilon_{abcdefg} u^a F^p_{\mu\nu} F^q_{\mu\nu} F^r_{\mu\nu} T^{bc}_p T^{de}_q T^{fg}_r$	S	S	A	S	1/2	±
Ã	$T^{abc}(ar{u}_a\gamma_\mu u_b)u_c$	S	S	A	S	3/2	±
Ñ	$T^{abc}(\bar{u}_a\gamma_5 d_b)u_c$	S	A	A	A	1/2	±

$$(7) \otimes (7) \otimes (7) = (1) \oplus \dots$$

(7) \otimes (14) \otimes (14) \otimes (14) $=$ (1) \oplus ...

Baryons	n _q	=	2
---------	----------------	---	---

Name	Operator	Pos.	Spin	Colour	Flavour	J	Р	C
$d(0^{++})$	$\bar{u}^{C}\gamma_{5}u+\bar{u}\gamma_{5}u^{C}$	S	A	S	S	0	+	+
$d(0^{+-})$	$\overline{u}^{C}\gamma_{5}u-\overline{u}\gamma_{5}u^{C}$	S	A	S	S	0	+	-
$d(0^{-+})$	$\overline{u}^{C}u + \overline{u}u^{C}$	S	A	S	S	0	-	+
d(0)	ū ^C u − ūu ^C	S	A	S	S	0	-	-
$d(1^{++})$	$ar{u}^{C}\gamma_{\mu}d+ar{u}\gamma_{\mu}d^{C}$	S	S	S	A	1	+	+
$d(1^{+-})$	$ar{u}^{C}\gamma_{\mu}d-ar{u}\gamma_{\mu}d^{C}$	S	S	S	A	1	+	-
$d(1^{-+})$	$\bar{u}^{C}\gamma_{5}\gamma_{\mu}d + \bar{u}\gamma_{5}\gamma_{\mu}d^{C}$	S	S	S	A	1	-	+
$d(1^{})$	$\bar{u}^{C}\gamma_{5}\gamma_{\mu}d-\bar{u}\gamma_{5}\gamma_{\mu}d^{C}$	S	S	S	А	1	-	-

 $(7)\otimes(7)=(1)\oplus\ldots$

Baryons
$$n_q = 3$$

Name	Operator	Pos.	Spin	Colour	Flavour	J	Р
Δ	$T^{abc}(\bar{u}_{a}^{C}\gamma_{\mu}u_{b})u_{c}$	S	S	A	S	3/2	±
N	$T^{abc}(\bar{u}_a^{C}\gamma_5 d_b)u_c$	S	A	A	A	1/2	±

 $(7)\otimes(7)\otimes(7)=(1)\oplus\ldots$

Correlation functions

$$C_{d}(x,y) = \langle d(0^{++})(x) d(0^{++})^{\dagger}(y) \rangle = \langle d(0^{+-})(x) d(0^{+-})^{\dagger}(y) \rangle$$
$$= \left\langle \overline{\chi}(x)\gamma_{5}\chi(x)\overline{\chi}(y)\gamma_{5}\chi(y) \right\rangle,$$
$$C_{\eta}(x,y) = \langle \eta(x) \eta^{\dagger}(y) \rangle$$
$$= 2 \left\langle \overline{\chi}(x)\gamma_{5}\chi(x)\overline{\chi}(y)\gamma_{5}\chi(y) \right\rangle + C_{d}(x,y)$$

Exact relations between diquark and meson masses

 $egin{aligned} m_{d(0^+)} = m_{\pi(0^-)} \ m_{d(0^-)} = m_{a(0^+)} \ m_{d(1^+)} = m_{
ho(1^-)} \ m_{d(1^-)} = m_{b(1^+)} \end{aligned}$

Spectroscopy

Volume $V = 8^3 \times 16$

Volume $V = 8^3 \times 16$

Two different ensembles

• Heavy ensemble

- Symanzik improved gauge action, Wilson fermions
- Volume $V=8^3 imes 16$, $\beta=1.05$, $\kappa=0.147$
- 35000 MC-Configs (7000 Measurements)
- Goldstone (diquark) mass $m_{d(0^{\pm\pm})} = 326$ MeV

• Light ensemble

- Symanzik improved gauge action, Wilson fermions
- Volume $V = 8^3 \times 16$, $\beta = 0.96$, $\kappa = 0.15924$
- 25000 MC-Configs (5000 Measurements)
- Goldstone (diquark) mass $m_{d(0^{\pm\pm})} = 247 \text{ MeV}$

Heavy ensemble

Volume $V = 8^3 \times 16$

 $\beta = 1.05$ and $\kappa = 0.147$

 $\mu = 0.0$

Light ensemble

Volume $V = 8^3 \times 16$

 $\beta = 0.96$ and $\kappa = 0.15924$

 $\mu = 0.0$

Finite density

Quark number density
$$n_q = rac{1}{V} rac{\partial \ln Z}{\partial \mu}$$

Volume $V = 8^3 \times 16$ $\kappa = 0.147$ $\tilde{a} = m_{d(0^+)}, \ \tilde{\mu} = \mu/m_{d(0^+)}, \ \tilde{T} = T/m_{d(0^+)}$

Polyakov loop P

Volume $V = 8^3 \times 16$

 $\kappa = 0.147$

 $ilde{a} = m_{d(0^+)}, \ ilde{\mu} = \mu/m_{d(0^+)}, \ ilde{T} = T/m_{d(0^+)}$

Chiral condensate
$$\Sigma = rac{1}{V} rac{\partial \ln Z}{\partial m}$$

Volume $V = 8^3 \times 16$

$$\kappa = 0.147$$

 $ilde{a} = m_{d(0^+)}, \, ilde{\mu} = \mu/m_{d(0^+)}, \, \, ilde{T} = T/m_{d(0^+)}$

Finite density - Silver blaze property

Quark number density $n_q = \frac{1}{V} \frac{\partial \ln Z}{\partial u}$

Volume $V = 8^3 \times 16$ $\kappa = 0.147$ $\tilde{a} = m_{d(0^+)}, \ \tilde{\mu} = \mu/m_{d(0^+)}, \ \tilde{T} = T/m_{d(0^+)}$

Onset transition to baryonic matter compared to diquark mass

- Onset transition to (bosonic) baryonic matter at $\mu_0 pprox m_{d(0^+)}/2$
- Silver blaze property known from QCD
- Diquarks condensate for $\mu>\mu_{\rm 0}$

Volume $V = 8^3 \times 16$ $\kappa = 0.147$

$$ilde{a} = m_{d(0^+)}, \, ilde{\mu} = \mu/m_{d(0^+)}, \, \, ilde{T} = T/m_{d(0^+)}$$

Heavy ensemble: Quark number density

Volume $V = 8^3 \times 16$

26 / 30

Light ensemble: Quark number density

Volume $V = 8^3 \times 16$

28 / 30

Light ensemble: Chiral condensate

Volume $V = 8^3 \times 16$

29 / 30

Conclusions

- G_2 gauge theories share many important features with SU(3) gauge theories
- There is no sign problem in G_2 -QCD: It is possible to investigate the phase diagram of a theory with fundamental quarks and fermionic baryons even at low temperatures and high densities with lattice simulations
- Mass spectrum on small lattices
- *G*₂-QCD possesses the silver blaze property
- Various transitions at zero temperature: diquark condensation, onset of nuclear matter and deconfinement/chiral restoration

A. Maas, L. von Smekal, B. H. Wellegehausen and A. Wipf, The phase diagram of a gauge theory with fermionic baryons, arXiv:1203.5653 [hep-lat], 2012.