The anti-symmetric LS potential
in flavor SU(3) limit from lattice QCD
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Background

€ In NN sector, LS potential is quite strong.
Ve =Vo(r)+ V. (r)6, -6, + Vo (r)(3(F-6,)(F-6,)- b, - 5,)

+V, (r)L- (5, +5,)+O(V?)
It has important influence on phenomenology
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Next speaker will tell you about this much more !



Background

€ In Lambda N sector,
O LS potential splits into two

Vi =Vo()+ V()6 -6, +Vi(r)(3(F-6,)(F6Gy)—6,Cy)
+V L5, +V@)L-5, +0(V?)

(1) Lambda-spin-dependent LS potential (red)
(2) Nucleon-spin-dependent LS potential (blue)

O High precision spectroscopy of p-shell hyper nuclei suggests  [H.Akikawa et al.,PRL88(2002)082501]
Strength of Lambda-spin-dependent LS potential is weak.

"Hypernuclear fine structure"
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~ separate |V < 0.1MeV

J Y spiit by Rearrangement

A1z y AN §p|n-dependent » = - _

A i X mteractlonsQ VLS (}")L ‘5, + VLS (I”)L ‘Sy
O Rearranging the two terms, it can be restated that =V, (P)L-(5, +5y)+V, (r)L-(5, —5y)

anti-symmetric LS(ALS) potential is so strong
that symmetric LS(SLS) potential is cancelled.
Quark model —> strong cancellation [S.Takeuchi et. al., PTPS137(2000)830]

Meson exch. model > weak cancellation [T.A.Rijken et al., PRC59(1991)21]



Anti-symmetric LS potential

Symmetric LS (SLS) m Anti-symmetric LS (ALS) mm

Z-§+=Z-(§1+§2) S=0 0 0 L-S =L (51 Sz)
only diagonal entry S=1 O * only off-diagonal entry S=1 * 0
Total spin S does not change. Total spin S has to change.

€ In NN sector, ALS is missing
(spin) ® (parity ) ® (isospin) = —1

Change of (spin) cannot be compensated by a change of (pairty)x(isospin)
because (parity) and (isospin) are conserved quantities.

flavor SU(3) rep.’s

€ In two-hyperon sector, ALS exists. 2701®10° ®@10®8(=8s® 8a)
(spin) ® (parity) ® (flavor) = —1 B 4 ;

O Change of (spin) can be compensated
by a change of flavor (8s <> 8a).

flavor sym.
S=1

O After flavor SU(3) is broken,
other “representations” can give
contributions.
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flavor anti-sym.




Construction of Hyperon potentials: Exp. v.s. Theory

€ Experimental construction

O Due to the short life time of hyperons,
direct scattering experiment is difficult.

O Method employed in the construction of
NN interaction cannot be used.

O Construction of hyperon potentials
requires a tremendous efforts.

&€ Theoretical construction

O HAL QCD collaboration recently developed
a lattice QCD method to construct hadron potentials
from Nambu-Bethe-Salpeter(NBS) wave functions.

O Itis faithful to scattering phases.
O It has been applied to many systems.

J-PARC
Exploration of multi-strangeness world
3 R Hadron Expernimental Facility

- Mlerialg éﬁa Life Science Facility

, E iy
<o

-
«

Accelerator-Driven
Transmutation Experimental Facility

NN, NY, YY (including coupled channnel),and NNN potentials in the parity-even sector

and MM, MB, etc.

O It has been recently extended to parity-odd sectors and LS potential.

(K.Murano et al., arXiv:1305.2293)

We apply this extension to the hyperon sector (parity-odd) to consider the expected
cancellation between the symmetric and the anti-symmetric LS potential

between N and Lambda.




HAL QCD method
€ Nambu-Bethe-Salpeter (NBS) wave function

v, (x.y) = Z,' (0| [B(x)B(y)]| B4+K)B(~k),in)

O It is related to the S-matrix through the reduction formula

(B(p,)B(p,),out! B(+k)B(~k),in)
= disc.+(iZ;") [d*xd*x,e" (O, +m* ) e (O, +m* )(0|T [ B(x,)B(x,)] B+K)B(-k).in)

O Equal-time restriction of NBS wave function shows the same asymptotic behavior
as the non-relativistic scattering wave function at long distance

y.(x—y)= x})iggollf,; (X,%,55,Y, =0) C.-J.D.Lin et al.,NPB619,467(2001).

_ i) sin(kr + 0 (k)) .
kr

as 1=|x—y|— large
€ Energy-independent potential is defined by Schrodinger equation:
(K* /m—H, )y, (F)= j &r'UF 7 W (F)

Resulting potential U(r,r’) reproduces the scattering phase,
because of the asymptotic behavior of the equal-time NBS wave function.



“Time-dependent” method (an efficient way to obtain HAL QCD potentials)
[N.Ishii et al.,PLB712(2012)437.]

€ Normalized BB correlator (R-correlator)

R(t,X—y)=e" <O‘T[B(5é,t)3(y,t) T ot = 0)]‘0> AW (k) = 24/m3 +k* —2m,,

:Zal} eXp(—tAW(k))l//E(x—y) Inelastic region
k
e 2mN +M
~t has to be sufficiently large to suppress I Elastic region
“inelastic contribution (E > 2m, + Moon): 2my,

€ “Time-dependent” Schrodinger-like equation (derivation)

1 9> 9 . K R k> AW (k)
———— |R(t,x) = . — —tAW (k - = i .
(4m 37 atj (7,X) ;ak meXP( ( ))l//k(x) «— - AW (k)+ i is used
m 'HAL QCD potential U satisfies
i l‘(’z i
(Hy+U)y (¥ =—w; ()
v~

“Time-dependent” Schrodinger-like equation

1 92 9 B N . It enables us to obtain the potential
amor g Ho |REX)= [&'¥UEF)REF) | without requiring the ground state
saturation.




Ground state saturation is not needed. (an example)

@ Source functions (with a single real parameter alpha)

f(x,y,z)=1+a(cos(2zx/ L) +cos(27wy / L) +cos(27wz/ L))
@ :alphais used to arrange the mixture of NBS wave functions

Central potential
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:an()—é_ ¥)-a (o) exp(~E. 1) __HR@#X) (0/0NR(t,%), 1 (9/9t) R(t.%)
- R(1,%) R(t,X)  4m  R(1,%)
6022 40— T
E hr I I I E
S 4 | 30 ‘ L ;
. . 3
S se22 [ 2 =
S il : 3
2g-22 — r=9 ‘ -
1e-22 |- 0=0.16 ——
C o=0.08
ol | | L 00,00 ——) 1
4] 0.5 1 1.5 25

r [fm] r [fm]

“Time-dependent” Schrodinger-like eq. leads to an alpha-independent result.



Two-hyperon source

€ To save the computational cost, we restrict ourselves to S=-1 sector.
(At this moment, the code is not efficient)

€ We can access flavor rep’sof  27®1091098,®8,
@ The following 4 operators:

e

ud |
ud |
ud |
ud |

d -

u
u .
u

suld
lud]s
(ds |u
[suld

are used to construct 4x4 matrix correlator
on the supercomputer.

The results are combined for flavor representations
on the workstation afterwards.



Momentum wall source [K.Murano et al, arXiv.1305.2293] 1o

€ Two-baryon source with a non-trivial orbital cubic group rep.

_ _ _ p = 640 MeV
Tap(P)= D, B,(%. 3,5, By (%55, %) - exp(ip - (¥, = 5,))
T B =6 (60T () g0
By (x5 %0) = €, (45 (2, )CY 5457 (x5)) 455 (x)
0 Non-vanishing momentum p is carried by “spectator quark”
) L=19 fm g

0 We consider momenta which are parallel (anti-parallel)
to the coordinate axes.



Momentum wall source [K.Murano et al, arXiv.1305.2293]

€ Cubic group analysis =» “orbital contribution” of source
A’ (~s-wave) ® E7 (~ d-wave) D T (~ p-wave)
=>» It generates NBS wave functions for (parity-odd sector)

J'=07(A), 1°(T)), 2 (E ®T,)

€ Two-hyperon potentials up to NLO

Vip = Veso WP + Vo (0P + Vo (r)(3(F-6,)(F-6,)- 5, - 5,)
+Vy s(PL-S, +V, (r)L-S_+0(V?)

are obtained by solving “t-dep” Schrodinger-like eq

PR - ~ S=1 S=0
(Ey—g—HO]R(I,X,j):VBBR(ta-xaj) P=0— 3P0
P = 1_ 3P1 I 1Pl
by employing sources for 3P0, 3P1, 3P2, 1P1 s |35 3
and flavor representations 27, 10, 10**, 8. =2 h—h




Lattice QCD setup

€ 2+1 flavor gauge configuration on 16”3x32 lattice generated by CP-PACS+JLQCD
O RG improved Iwasaki gauge action at beta=1.83 &LLDG P

O O(a) improved Wilson quark (clover) action
with C,,=1.761 at kappa_{uds}=0.1371 (flavor SU(3) limit)
{ a=0.121(2) fm; 1/a = 1630.58 MeV; L=32a = 1.93(3) fm
<> m(baryon) = 2051(3) MeV
m(PS)  =1013(1) MeV
0 700 gauge configurations with 8 source points are used.

0.12fm

a
e < —

—~

e L=16a=19fm
@ Relativistic dispersion is violated.

Fit with E*(k*)=m’ +k* Fit with E*(k*)=m*+ak’
ol L g s e

[ [} } I k=(0,0,0}*2xL —e—1 ¥ ] } k=(0,0,0)*2xL —e—
= R E = ' g o =0.9134(19)

g g
— fit region e fit region

va

”time-depenenta” Schrodinger-like eq. has to be modified as

LN LA P P [axuE#Re)
o |4mot> ot ° o ’ ,



Numerical Results(1) 27 & 10°* sector (€= NN sector)

Flavor 27 rep (Parity-odd Potentials)
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Numerical Results(2): 10 sector
Flavor 10 rep (Parity-odd Potentials)
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@ The central potential in flavor 10 sector (parity-odd)

does not have a repulsive core.
(This is consistent with quark model.)



Numerical Results(3): 8 sector

Flavor 8 rep (Parity-odd Potentials)
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€ No repulsive cores in spin-singlet and triplet central potentials
in flavor 8 sector (parity-odd).
[This is consistent with quark model.]

@ Large anti-symmetric LS potential is obtained (with good Hermiticity).



Phase shift and mixing parameter (flavor 8 sector)

@ Fit with various multi-gaussian functions

Flavor 8 rep (Parity-odd Potentials)

500 F VSLs(r) —e—
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V() [MeV]

@ Stapp’s bar convension is adopted.

@ Attractive phase shifts.

€ Rather large mixing parameter.
(Anti-symmetric LS mixes spin-singlet
and spin-triplet sectors)

3F’1 N P, scattering observables in Flavor 8 rep
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Phase shift and mixing parameter (flavor 8 sector)

€ Smooth parameterizations with various multi-gaussian functions

Flavor 8 rep (Parity-odd Potentials) 3F’1 - P, scattering observables in Flavor 8 rep
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€ Another functional form of symmetric LS potential is tried. (Almost nothing changes in the phase shift)

Flavor 8 rep (Parity-odd Potentials) 3P1 ! P, scattering observables in Flavor 8 rep
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Lambda N potential
€ Lambda N potentials are obtained as linear combinations of 8, 10* and 27.

Flavor 8 rep (Parity-odd Potentials)

Flavor 10° rep (Parity-odd Potentials)
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Summary

€ We have calculated parity-odd two-hyperon potentials in the flavor SU(3) limit for
SP10D10° ®27

€ Central potentials for 10~* and 27 have repulsive cores at short distance,
whereas central potentials for 8 (spin singlet and triplet) and 10 do not
have repulsive core. [This is consistent with quark model]

€ Rather strong anti-symmetric LS potential is obtained in flavor 8 channel.

€ 8, 107* and 27 potentials are combined to give Lambda N potentials(parity-odd)
O It has a strong symmetric LS potential. (which comes from 27 rep (90%))

O Anti-symmetric LS potential becomes weakened by a CG factor 1/(2*sqrt(5))
=» weak cancellation !!!

O The following two possibilities have to be examined
<> light quark mass effect (m_u==m_d ==m_s)
<> SU(3) breaking effect (m_u==m_d << m_s) =>» physical quark mass
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“Time-dependent” method for violated relativistic dispersion

. E(k) =m’ +ak”+0(k*)
€ Normalized BB correlator (R-correlator)

R.5-5)= " (O[T [ BENDBGH Tt =0)J0) AV O=2EG=2m

:Zal? exp(—tAW(k))l//E(x—y) ‘ Inelastic region
k
e 2mN +M
~t has to be sufficiently large to suppress I Elastic region
_inelastic contribution (E > 2m + Mion)- 2my,

€ “Time-dependent” Schrodinger-like equation (derivation)

—

1 9> 9 ~ k . . k> _ AW (k) .
[ay—g)m,xh;aﬁazexp(—mmk))%(x) o= AW R+ 2 P s used,
'HAL QCD potential U satisfies
i l‘(’z i
(H0+U)wg<fc>=5w,;<%>
-

“Time-dependent” Schrodinger-like equation

1(1 9% 9 B o . It enables us to obtain the potential
o\ Im oz oy |7 Ho |REX)= _[d X UX,X)R(,X) | without requiring the ground state
saturation.




Existence of energy-independent interaction kernel 22

€ We assume linear independence of NBS wave functions below the pion threshold

=» There exists a dual basis F=9 /m; PR <2my, 4m
[&ry o (Fyy (7)=@2r)8 (K - k)
€ We have
K (F)=(k*/ m, - H, )y (7)
- d’k N et .
=) o K™ [&rv o (Fyw, ()
- d’k ~
_ 3.7 = =/ =/
= [a*r { | ey e W )}w,;(r)
If we define an energy-independent interaction kernel by
— =\ d’k’ a T o Owing to the integration of k/,
Ur,r)= J(2ﬂ)3K1€,(r)l//,;,(r) U(r,r’) is energy-independent

then it generates NBS wave functions below the pion threshold

(kz/mN_Ho)WE(F): Jd3r,U(F>’7’)‘/f/€(’7) for Ezzx/mh/}'z <2m,+m,



