
Experiences with OpenMP in tmLQCD

A. Deuzeman, B. Kostrzewa, C. Urbach
for the ETM collaboration

Institute of Physics
Humboldt-Universität zu Berlin

DESY, Zeuthen Site
Supported in full by FNR AFR PhD grant 2773315

Lattice 2013, Mainz
2nd August 2013

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 1 / 16



Overview
Experiences from adding OpenMP to tmLQCD

1 Introduction

2 Subtleties

3 Benefits and Overheads

4 Improvements

5 Summary and Concluding Remarks

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 2 / 16



Introduction
OpenMP

Shared memory parallel programming models

Data shared between execution units (e.g. threads)

No explicit communication (usually)

⇒ synchronization built into programming model
⇒ lower memory requirements (usually)
! need for ”locking” when data is modified concurrently

OpenMP

Simple syntax through pragmas with ”directives”:
#pragma omp parallel
I can be specialized with parameters, even runtime conditionals

Most common scenarios are addressed

Strong focus on loops

No provision for complicated models before OpenMP 3.0

⇒ e.g.: no possiblity (within syntax) to launch independent ”I/O thread”

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 3 / 16



Introduction
Basic Example

su3 function(args) {

su3 accum;

su3 U0, U1, U2;

#pragma omp parallel for private(U0,U1,U2) shared(args,accum)

for(int x = 0; x < VOLUME; ++x) {

for(int mu = 0; mu < 4; ++mu) {

U0 = get_staples(x,mu);

[...]

}

}

return accum;

}

+ explicit mention of private/shared

− nightmare to maintain → updating private/shared prone to
mistakes

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 4 / 16



Introduction
Improved Basic Example

Use scoping rules to automate private / shared:
su3 function(args) {

su3 accum;

#pragma omp parallel

{

su3 U0, U1, U2;

#pragma omp for

for(int x = 0; x < VOLUME; ++x) {

for(int mu = 0; mu < 4; ++mu) {

U0 = get_staples(x,mu);

[...]

}

}

} /* OpenMP parallel closing brace */

return accum;

}

+ private/shared automatic, less overhead for multiple for loops
− private/shared less explicit

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 5 / 16



Subtleties
working set size, performance, execution order

Setting up threads and assigning work has overhead

maximize work, reduce relative size of overhead

Debugging can be challenging

execution order not fixed (e.g.: summations) → difficult to
differentiate bug and rounding

some bugs may only show ’in production’ and with very high statistics

⇒ add debugging code with explicit ordering
! even then, errors might only show in high statistics

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 6 / 16



Subtleties
Amdahl & co.

Amdahl’s law

many threads → 2% serial function can easily turn into 25%

⇒ need to add OpenMP almost everywhere

Barriers can have substantial overhead

Slow: computationally simple loops

Slow: unbalanced thread workload

⇒ Use tools to find problematic areas
? Example: scalar product

F simple function → large barrier overhead
F scheduling: ’static’ → ’guided’ leads to 50% reduction in loop barrier

overhead
F however, total time spent reduced only by 10%

⇒ Combine operations to increase workload

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 7 / 16



Subtleties
Data concurrency and race conditions

Concurrent data access requires locking

! #pragma omp critical is very slow

Use #pragma omp atomic

[...]

#pragma omp atomic

derivative.d4 += [...]

[...]

! Operation must compile into single instruction
! Safety guaranteed only if multiple threads read, one thread writes
! Conflicts may be unnoticeable in test programs
! Conflict probability depends on total thread number

In macros, use this syntax:

_Pragma("omp atomic")

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 8 / 16



Subtleties
False sharing

threads update independent data, but on same cache line

threads will invalidate each other’s cache lines
! can slow multi-threaded program to less than sequential speed
⇒ Add padding to ensure separate cache-lines, but total no. of cache

lines limited!

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 9 / 16



Benefits and Overheads
Scaling

OpenMP scaling

1 process per
node

Variable number
of hardware
threads

Overlapping MPI
Communication
(no SPI!)

16 24 32 40 48 56 64

10

15

20

25

30

35

40

45

50

tmLQCD hopping matrix benchmark

OpenMP threads

G
fl

op
/

s 
pe

r 
no

d
e

●
●

●

●
●

●
●

● ●
● ● ●●●●●

●

●

●

●

●
●

●

●
●

●
●

●●●●●

●L=8 L=12 L=16 No Comms

Scaling seems quite linear

When local volume too small → use fewer threads?
B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 10 / 16



Benefits and Overheads
What’s the point?

Full oversubscription

Using maximum
number of
hardware threads

⇒ Nthreads ×
Nprocs = 64

Overlapping MPI
Communication
(no SPI!)

0 8 16 24 32 40 48 56 64
0

10

20

30

40

50

60

tmLQCD hopping matrix benchmark

OpenMP threads per process

G
fl

op
/

s 
pe

r 
no

d
e

●● ●
● ●

● ●

●

● ●

●

●
●

●

●L=8 L=12 L=16 No Comms

OpenMP and MPI overheads are comparable on BG/Q
I Hybrid MPI/OpenMP codes scale to more cores

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 11 / 16



Benefits and Overheads
Overlapping communication and computation!

Standard non-blocking MPI Isend/recv usually communicate in
MPI WaitAll ⇒ effectively blocking
One-sided MPI communication difficult and a lot of work
⇒ Do MPI Isend/recv and MPI Waitall in the same thread!

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 12 / 16



Improvements
Overhead reduction

Coarsen parallelism - reduce ’parallel’ overhead

employ ’orphaned’ directives a

void complex_function(output,input) {

#pragma omp parallel

{

operator1(output,input);

operator2(output,input);

[...]

} /* OpenMP parallel section closing brace */

}

void operator1(output,input) {

#pragma omp for

for(int x = 0; x < VOLUME; ++x) { [...] }

}

athanks to A. Deuzeman for pointing this out

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 13 / 16



Improvements
Dedicated memory for push algorithms - no locking, no concurrency issues

+ No locking overhead or concurrency issues

+ ’Obvious’ for hopping matrix (half-spinor)

+ Keep efficient flop/byte ratio (rather than converting to pull-style)

− Extra loop to collect the results

− Higher memory requirements

− Dedicated function versions and memory layout when using threads

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 14 / 16



Summary and Concluding Remarks

Implementing good multi-threaded code is difficult
I Benchmark and use performance tools
I Balanced workloads lead to highest performance
I Exploit scoping rules for maintainability
I Eliminate false-sharing
I Fine-tune scheduling
I Coarse-grained parallelism
I ...

+ Pay-offs on CPUs with many cores and efficient threading (BG/Q)

+ Overlapping communication and computation using usual
MPI Isend/recv

+ For BG/Q, threading allows very efficient communication with SPI

− Intel currently lagging behind, overheads LARGE

? Situation on Cray currently unknown

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 15 / 16



Thank you for your attention!

tmLQCD is an open-source project:
http://github.com/etmc/tmLQCD

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 16 / 16


	Introduction
	Subtleties
	Benefits and Overheads
	Improvements
	Summary and Concluding Remarks

