Experiences with OpenMP in tmLQCD

A. Deuzeman, B. Kostrzewa, C. Urbach
for the ETM collaboration

Institute of Physics
Humboldt-Universitat zu Berlin

DESY, Zeuthen Site
Supported in full by FNR AFR PhD grant 2773315

Lattice 2013, Mainz
2nd August 2013

“*N Fonds National de Ia
| Recherche Luxembourg

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD

Overview
Experiences from adding OpenMP to tmLQCD

@ Introduction

© Subtleties

© Benefits and Overheads
© mprovements

© Summary and Concluding Remarks

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD

Introduction
OpenMP

Shared memory parallel programming models

@ Data shared between execution units (e.g. threads)
@ No explicit communication (usually)

= synchronization built into programming model
= lower memory requirements (usually)
! need for "locking” when data is modified concurrently

OpenMP

@ Simple syntax through pragmas with "directives”:
#pragma omp parallel

can be specialized with parameters, even runtime conditionals
@ Most common scenarios are addressed

@ Strong focus on loops
@ No provision for complicated models before OpenMP 3.0
= e.g.: no possiblity (within syntax) to launch independent "1/0 thread"

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 3/16

Introduction

Basic Example

su3 function(args) {
su3 accum;
su3 U0, U1, U2;
#pragma omp parallel for private(U0,U1,U2) shared(args,accum)
for(int x = 0; x < VOLUME; ++x) {
for(int mu = 0; mu < 4; ++mu) {
U0 = get_staples(x,mu);
[...]
}
}

return accum;

+ explicit mention of private/shared

— nightmare to maintain — updating private/shared prone to
mistakes

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 4/ 16

Introduction

Improved Basic Example

e Use scoping rules to automate private / shared:

su3 function(args) {
su3 accum;
#pragma omp parallel

su3 U0, U1, U2;
#pragma omp for
for(int x = 0; x < VOLUME; ++x) {
for(int mu = 0; mu < 4; ++mu) {
U0 = get_staples(x,mu);
[...]
}
}
} /* OpenMP parallel closing brace */
return accum;

3

+ private/shared automatic, less overhead for multiple for loops

— private/shared less explicit

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD

2nd August 2013

5/16

Subtleties

working set size, performance, execution order

Setting up threads and assigning work has overhead

@ maximize work, reduce relative size of overhead

Debugging can be challenging
@ execution order not fixed (e.g.: summations) — difficult to
differentiate bug and rounding
@ some bugs may only show 'in production’ and with very high statistics

= add debugging code with explicit ordering
! even then, errors might only show in high statistics

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 6 /16

Subtleties
Amdahl & co.

Amdahl’s law

@ many threads — 2% serial function can easily turn into 25%
= need to add OpenMP almost everywhere

Barriers can have substantial overhead
@ Slow: computationally simple loops

@ Slow: unbalanced thread workload

= Use tools to find problematic areas
* Example: scalar product

simple function — large barrier overhead

scheduling: ’static’ — 'guided’ leads to 50% reduction in loop barrier
overhead

however, total time spent reduced only by 10%

= Combine operations to increase workload

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 7 /16

Subtleties

Data concurrency and race conditions

@ Concurrent data access requires locking

! #pragma omp critical is very slow

@ Use #pragma omp atomic
[...]

#pragma omp atomic
derivative.d4 += [...]

[...]

Operation must compile into single instruction

Safety guaranteed only if multiple threads read, one thread writes
Conflicts may be unnoticeable in test programs

Conflict probability depends on total thread number

@ In macros, use this syntax:

_Pragma("omp atomic")

v

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 8 /16

Subtleties

False sharing

@ threads update independent data, but on same cache line

memory | 1' 2' 3’ 4 |

/ cache line size

L1123,41123,4[F11,2,3,4
core 1 core 2 core 3

@ threads will invalidate each other’s cache lines
! can slow multi-threaded program to less than sequential speed
= Add padding to ensure separate cache-lines, but total no. of cache
lines limited!

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013

9/16

Benefits and Overheads

Scaling

OpenMP scaling

@ 1 process per
node

@ Variable number
of hardware
threads

@ Overlapping MPI
Communication

(no SPI!)

Gflop/s per node

@ Scaling seems quite linear

@ When local volume too small — use fewer threads?

tmLQCD hopping matrix benchmark

50
000°°
45 o ° R °
o
40 °
35 1 . ot . e
. .
30 1 .
o
25 ¢ a o O O o o o
o
20 g
|]
15{m g " NN g
L 2 2 2 2 2 2 L 2
10 A
= | =8 . L=12 A L=16 0 No Comms
T T T T T T T
16 24 32 40 48 56 64
OpenMP threads

2nd August 2013

Benefits and Overheads
What's the point?

tmLQCD hopping matrix benchmark

60
Full oversubscription .
. . D ° °
@ Using maximum 507 oo .
number of © o °
T 40 Bo o
hardware threads g . .
Q
Q .
= Nihreads ¥ & 309 " . o
o
Nprocs =64 2 o
) & 20
@ Overlapping MPI ';z u " -
. g A
Communication 104 % 4 4
(no SP||) " L=8 . L=12 A L=16 O No Comms

0 - T T T T T T T T

0 8 16 24 32 40 48 56 64
OpenMP threads per process

@ OpenMP and MPI overheads are comparable on BG/Q
» Hybrid MPI/OpenMP codes scale to more cores

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013

11/ 16

Benefits and Overheads
Overlapping communication and computation!
@ Standard non-blocking MPI_Isend/recv usually communicate in

MPI WaitAll = effectively blocking
@ One-sided MPIl communication difficult and a lot of work
= Do MPI_Isend/recv and MPI_Waitall in the same thread!

60 o R
55 OpenMP overhead
... B mmemeeaee
o 504 e
o
g
= 45
8_ MPI overhead
& --------------------------- Ao
2. 40
o
S ------------------- @
35 1 = MPI - no overlap
® MPI - overlap
i 4 SPI - nooverlap
301 ®---1 ¢ SPI - overlap
= comm. disabled (1 proc/node)
25 v no OpenMP and comm. disabled (64 proc/node)

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 12 / 16

Improvements

Overhead reduction

Coarsen parallelism - reduce 'parallel’ overhead
@ employ 'orphaned’ directives ¢

void complex_function(output,input) {
#pragma omp parallel
{
operatorl (output,input) ;
operator2(output,input) ;
[...]
} /* OpenMP parallel section closing brace */

}

void operatorl(output,input) {

#pragma omp for

for(int x = 0; x < VOLUME; ++x) { [...] }
}

“thanks to A. Deuzeman for pointing this out

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013

13/ 16

Improvements

Dedicated memory for push algorithms - no locking, no concurrency issues

X+v
A

A
Y

X-1 X X+

X-D

No locking overhead or concurrency issues

'Obvious’ for hopping matrix (half-spinor)

+ o+ o+

Keep efficient flop/byte ratio (rather than converting to pull-style)
— Extra loop to collect the results
— Higher memory requirements

— Dedicated function versions and memory layout when using threads

y
B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 14 / 16

Summary and Concluding Remarks

@ Implementing good multi-threaded code is difficult

Benchmark and use performance tools

Balanced workloads lead to highest performance
Exploit scoping rules for maintainability
Eliminate false-sharing

Fine-tune scheduling

Coarse-grained parallelism

+ Pay-offs on CPUs with many cores and efficient threading (BG/Q)

+ Overlapping communication and computation using usual
MPI_lsend /recv

+ For BG/Q, threading allows very efficient communication with SPI
— Intel currently lagging behind, overheads LARGE

? Situation on Cray currently unknown

v

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 15 / 16

Thank you for your attention!

tmLQCD is an open-source project:
http://github.com/etmc/tmLQCD

B. Kostrzewa (bartosz.kostrzewa@desy.de) Experiences with OMP in tmLQCD 2nd August 2013 16 / 16

	Introduction
	Subtleties
	Benefits and Overheads
	Improvements
	Summary and Concluding Remarks

