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Heavy Ion Physics
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RHIC at Brookhaven LHC at CERN

High energy (LHC): most baryons fly through → small baryon density 
Lower energy (RHIC): baryons are stopped → large baryon density 

( μ=0 physics)
( μ>0 physics)
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Beam energy scan program
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Freeze-out curve:

A model of free hadrons (with T=0 masses) 
is fitted on the ratios of particel yields.

This (grand canonical) thermal model fits 
well and gives a (T,μ) pair for each collision 
energy.

Lattice transition line:
[Aoki et al hep-lat/0609068]

[Endrodi et al 1102.1356] 
[Kaczmarek et al 1011.3130] 

[Andronic et al nucl-th/0511071]Thermal models:
[Cleymans et al hep-ph/0511094]
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Fluctuations of the net charge
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[V. Koch’s cartoon]

The acceptance condititon must be sufficiently
- narrow, to allow to approximate a grand canonical ensemble
- wide, to allow all correlation lengths characteristic to a grand canonical ensmeble

A conserved quantum number is counted for a subsystem. (e.g. net electric charge)
For each event (individual collision) this net quantum number reflects the instant when
the hadrons were formed.

Lattice calculates these moments in a grand canonical ensemble. 
Experiment measures the distribution of the net charge (mean, variance, skewness, kurtosis...)

〈
N2

X

〉
− 〈NX〉2 =

∂2 log Z

(∂µX/T )2O(V) cancellation
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Fluctuations on the lattice
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A derivative of log Z acts on the fermion determinant inside of the effective gauge action:

Through further derivatives disconnected diagrams appear alongside with higher operators.

(X is one of A,B,C ...)

These traces are evaluated 
with several (N=O(1000)) 
random sources, for each 
gauge configuration:

A =
1
N

∑

i

χ+
i M−1M ′χi

a conjugate gradient solver

Disconnected: noisy Connected: sensitive to taste breaking
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Fluctuations on the lattice
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A derivative of log Z acts on the fermion determinant inside of the effective gauge action:

Through further derivatives disconnected diagrams appear alongside with higher operators.

(X is one of A,B,C ...)

102

103

104

105

 120  140  160  180  200  220  240
T [MeV]

# analyzed configurations Nt= 6
Nt= 8

Nt=10
Nt=12
Nt=16

Disconnected: noisy Connected: sensitive to taste breaking

T>0 simulations with 2-stout staggered fermions:
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Results in the continuum
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Comparison of the published continuum results:
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Continuum extrapolation
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Looking for a thermometer
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Assumption:
Before freeze-out the system is described with a time-dependent temperature
and baryo, charge and strange chemical potentials.
After freeze-out the net bayron, charge and strangeness reflects the system an
equilibrium well-defined freeze-out tempearture.

This picture was supported by the statistical models.

Thermometer:
 - experimentally accessible (ratios to cancel the volume factor)
 - monotonic in T
 - known from theory

T T
typical from HRG typical from lattice

experiment will give 
a band on the y axis

T
suboptimal observable

χ̂X
4 =

1
V T 3

∂4 log Z

(∂µX/T )4 χ̂X
2 =

1
V T 3

∂2 log Z

(∂µX/T )2

[Karsch 1202.4173]

9



Charge and baryon kurtosis
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RBC-Bielefeld [0811.1006]
old data (2008) new data (2012)
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Charge skewness at RHIC
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suggested and calculated in 
[BNL-Bielefeld 1208.1220]

[continuum limit and WB data: 1305.5161]
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RHIC: 
-  Lattice data must be extrapolated to μ>0 keeping the onstraints: <S>=0 and <Q>=Z/A <B>
+ Mean and skewness are zero at LHC (μ=0) but nonzero here → they define a thermometer.

[STAR 1212.3892]
net charge distribution 
(most central in red)

Lattice: [Wuppertal-Budapest 1305.5161]

Result: T < 157 MeV
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Baryometer of the electric charge 

12[based on the proposal in 1202.4173  & 1208.1220 of the BNL-Bielefeld group]
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Limitations of this picture
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• Experiments (Phenix vs. Star) do not yet agree on fluctuations, thus the freeze-out
result is not final yet. (Final state interactions must be modelled)
• The results from baryon and charge fluctuations are inconsistent 
(not baryon fluctuations but proton fluctuations are measured, 
 the protons do not really form a grand canonical ensemble)
• We assumed that all degrees of freedom in the quark gluon plasma is turned into
hadronic matter at a unique temperature. (The heavier strange might freeze out earlier)

Statistical model fit
(gas of free hadrons)
show inconistent results
for strange / non-strange
yield ratios at LHC.

[see Wagner Mon 15.20]

13



Flavor sensitivity in the fluctuation
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Strange susceptibility vs light quark susceptibility: 
about 16 MeV difference in the characteristic point.

[Bellwied et al (WB) 1305.6297]
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Two indicators of deconfinement
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In [1304.7220] the BNL-Bielefeld group has suggested two combinations of fluctuations
that are nonzero only if a non-hadronic strange degree of freedom is excited.
We extended this to the light flavors and calculated the continuum limit.

These combinations are constructed such that a free gas of baryons or mesons
give zero, but a free quark would give a non-zero contribution. 

[Bellwied et al (WB) 1305.6297]

[Schmidt Tue 15.00]
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Multi-strange observables
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It is possible to construct other observables that are  dominated by the
multi-strange hadrons. Here the flavor separation is the strongest.
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The Hadron Resonance Gas prediction is non-trivial here.
Observation: the lattice data has a kink where it departs from the HRG result.

[ direct observables ]
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A possible scenario
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Evidence:
- Lattice observables are sensitive to quark mass (multi-strange: stronger sensitivity)
- Last point of agreement to Hadron Resonance Gas is flavor dependent
- Fit to yields shows a preference to flavor dependent freeze-out

No evidence:
- lattice cannot say anything about freeze-out
- Tc is not necessary the peak/inflection point of some susceptibility curve

A picture:

u du

uds sss

u d
u

s s ss
u

d

u d

us
s

s

su

d

T < 150 MeV 150 MeV < T < 165 MeV T > 165 MeV
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Summary
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 The width of net charge/strangeness/baryon distribution is predicted in the continuum 
limit by both the HotQCD and Budapest-Wuppertal collaborations.

 Higher cumulants (curtosis) have been presented, comparison to experiment is now 
possible

 Ratios of fluctuations have been used to define freeze-out thermometers and bayrometers.

 In several cases preliminary data shows significant deviations 
from the simplest HRG result, even below Tc.

 Experimentally accessible flavor sensitive observables have been calculated.
 Is there a flavor hierarchy in the deconfinement transition of QCD?

All data: based on continuum extrapolated lattice resuts from the
Wuppertal-Budapest collaboration.

[1112.4416] [1204.6710] [1210.6901] [1305.5161] [1305.6297]
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Spare slides
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Baryon/charge ratio
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Ratio of ratios as a thermometer
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If the baryon number could be measured reliably, a thermometer could be constructed
based on 2nd order fluctuations: “almost trivial” both for lattice and for experiment.
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Charge thermometer?
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Hadron Resonance Gas
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The hadron resonance gas (HRG) model discribes a mixture of free hadrons:
all mesons and baryons and their excited states you find in the particle data book.

Degeneracy factor di: spin, etc, chemical potentials enter through
This model is a good approximation to QCD in the hadronic phase:

low T: mostly pions, they interact very weakly in QCD and chiPT

higher T: interactions are included through the growing number of resonances.
In the strong coupling expansion the partition function reproduces HRG.

HRG has been tested against lattice in a heavy pion world.

[Grasser&Leutwyler 1984] [Greber&Leutwyler 1989]

[Langelage&Philipsen 1002.1507]

[Dashen,Ma,Bernstein 1969]

[Karsch et al 0303108] [Petreczky&Huovinen 0912.2541,1005.0324,1106.6227]
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All diagonal fluctuations
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Comparison to HTL expansion
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[Andersen et al 1210.0912]

[Haque&Mustafa&Strickland 1302.3228]
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Status of experiment
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[X. Luo (STAR) 1210.5573]

proton electric charge

[N R Sahoo (STAR) 1212.3892]
[McDonald (STAR) 1210.7023]
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At finite chemical potential
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Lower energies (RHIC): higher chemical potential
√

s [GeV ] µB

200 22.4
62.4 69
39 107.2
27 149

χAB... =
1

V T 3

[
∂

∂µA/T

∂

∂µB/T
. . .

]
log Z

From lattice QCD we can calculate

at zero chemical potential.

χQ|µB
= χQB |µB=0

(µB

T

)
+

1
6

χQBBB |µB=0

(µB

T

)3
+ . . .

χQQ|µB
= χQQ|µB=0 +

1
2

χQQBB |µB=0

(µB

T

)2
+ . . .

χQQQ|µB
= χQQQB |µB=0

(µB

T

)
+

1
6

χQQQBBB |µB=0

(µB

T

)3
+ . . .

χQQQQ|µB
= χQQQQ|µB=0 +

1
2

χQQQQBB|µB=0

(µB

T

)2
+ . . .

Odd/even ratios:
Odd/odd ratios: χQQQ/χQ = Sσ3/M = χQQQB/χQB +O(µB

2)

Even/even ratios:

[Andronic et al 0812.1186 ] 

[ Karsch 1202.4173]

χQ/χQQ = M/σ2 = χQB/χQQ · µB/T + Oµ3
B

χQQQQ/χQQ = κσ2 = χQQQQ/χQQ|µB=0 + O(µB
2)
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Line of constant net “M” ratios
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Input matter content: two colliding nuclei MQ = MB
Z

A

MS = 0 (lead)
To leading order:

MB ∼ χB
2 (T )µB + χBQ

11 (T )µQ + χBS
11 (T )µS

MQ ∼ χBQ
11 (T )µB + χQ

2 (T )µQ + χQS
11 (T )µS

MS ∼ χBS
11 (T )µB + χQS

11 (T )µQ + χS
2 (T )µS

The total matter content constrains the chemical potentials onto a 1D manifold (line),
which we conveniently parametrize through μB:

r =
Z

A
=

82
207

≈ 0.4

q1 =
(rχBS

11 − χQS
11 )χBS

11 − (rχB
2 − χBQ

11 )χS
2

(rχBQ
11 − χQ

2 )χS
2 − (rχBS

11 − χQS
11 )χQS

11

s1 = −(χQS
11 q1 + χBS

11 )χS
2

The NLO coefficients (q3 and s3) contain 4th derivatives.

These have been first calculated in [BNL-Bielfeld1208.1220]

µQ(T, µB) = q1(T )µB + q3(T )µ3
B + . . .

µS(T, µB) = s1(T )µB + s3(T )µ3
B + . . .
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Line of constant net “M” ratios
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Baryon skewness as thermometer
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