

in collaboration with

A. Bazavov, H.T. Ding, P. Hegde, F. Karsch, C. Miao, S. Mukherjee, C. Schmidt, A. Velytsky

Lattice data collected : 2009-2013 with p4 and HISQ action

Quark number susceptibilities (QNS) are defined as:

$$\chi_{2n}^{q} = \frac{\partial^{2n} (p/T^{4})}{\partial (\mu_{q}/T)^{2n}}|_{\mu_{q}=0}, \quad q = l, s, \ n = 1, 2$$

Lattice 2013, Mainz, July 29, 2013

Deconfinement : fluctuations of conserved charges

Deconfinement : fluctuations of conserved charges

Motivations

What are the degrees of freedom at high *T*? Do we understand cutoff effects at high *T*?

Resummed perturbative approach seems to agree with LQCD within large uncertanties \Rightarrow Extend to higher T, where the uncertanties are smaller

Cutoff effects are large for std. action

Cutoff effects in the free theory

Hegde et al, EPJC 55 (08) 423

The truncated expression works qualitatively \Rightarrow use it for continuum extrapolation

Beyond tree level cutoff effects should scalae as:

 $\alpha_s^n / N_{\tau}^2, \ n = 1, 2, \dots$

Second order quark number susceptibility

Cutoff effects for HISQ agree qualitatively with the free theory expectations but x_2 smaller In the studied *T*-range, possible accurate quantitatively at higher *T*

Cutoff effects for p4 action are different from the free theory expectation, continuum is approached from above

p4 : c/N_{τ}^2 extrapolations

HISQ : $a/N_{\tau}^4 + b/N_{\tau}^6$ extrapolations

Continuum limit for second order quark number susceptibility

Continuum extrapolations for p4 and HISQ agree well

The difference between the light and strange QNS becomes small for T>400 MeV and negligible for T>600 MeV

For T < 400 MeV strange QNS agrees with the stout results within errors but the light QNS are larger by two standard deviations Borsányi et al, JHEP 01 (2012) 138

Fourth order quark number susceptibility

Cutoff effects in the 4th order QNS are similar to the cutoff effects in the 2nd order QNS, the continuum limit is approached from above

The deviations from the ideal gas limit appear to be larger

Comparison with resummed perturbative calculations

HTLpt : Haque, arXiv:1302.3228 Resummation in 3d effective theory: Andersen et al, PRD87 (13) 074003 Next-to-leading log resummation: Rebhan, hep-ph/0301130 (only 2nd order susceptibility)

Except for NLA resummed perturbative calculations are too low for 2nd order susceptibility

Resummed 3d result agrees within error but maybe high for the continuum lattice data \Rightarrow Need HISQ data and higher temperatures

Summary and conclusions

Second order quark number susceptibilities have been calculated in the continuum limit for 200 MeV < T < 950 MeV and p4 and HISQ results agree

At the highest temperatures deviations from the ideal gas limit is only 5% for the second order quark number susceptibilities and about 20% for the fourth order quark number susceptibilities

 \Rightarrow difficulties for resummed perturbative calculations

Cutoff effects at high temperatures are qualitatively described by the free theory result but (40-60)% smaller

 \Rightarrow lessons for continuum extrapolations for EoS

BACKUP:

