The QCD Phase Transition with Domain Wall Fermions and Physical Pion Masses

31st International Symposium on Lattice Field Theory July 30, 2013

Chris Schroeder (for the HotQCD/LLNL/RBC collaboration)

Lawrence Livermore National Laboratory

LLNL-PRES-641426

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

- Domain Wall Fermions
 - chiral and $U(1)_A$ symmetries unbroken by discretization \rightarrow can study both chiral and $U(1)_A$ symmetry breaking
 - 3 pions (just like reality!)
- Physical (and 200 MeV) pion (and kaon) masses
 - m_{π} = 200 MeV, N_{τ} = 8, N_{σ} = 32 (and 16 and 24) (LLNL/RBC)
 - m_{π} = 135 MeV, N_{τ} = 8, N_{σ} = 32 (and 64)

(HotQCD)

- Chiral Symmetry Breaking
 - confirm staggered results for $T_{\gamma SB}$ (quasi-critical temperature)
 - tension with staggered results for $\chi_{l,\text{disc}}$ and m_{π} dependence
- U(1) Axial Symmetry Breaking
 - $U(1)_A$ broken above $T_{\chi SB}$
 - confirm features of dilute instanton gas approximation

- Calculations not possible without state of the art HPC
 - algorithms: DSDR, Möbius
 - software: BAGEL (for BG/Q), CPS
 - machines: LLNL/IBM Sequoia/Vulcan Blue Gene/Q

Outline

- the QCD finite-temperature transition
- domain wall fermions
- chiral susceptibilities and chiral symmetry
- chiral susceptibilities and U(1)_A
- the Dirac spectrum and dilute instanton gas approximation
- a new and improved subtracted chiral condensate

The QCD Finite-T Transition

The spontaneous breaking of chiral symmetry

 $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$

is a crucial aspect of the history and present state of our Universe

- studied intensely for over 30 years, experimentally and theoretically
- outstanding puzzle #1: role of anomalous $U(1)_A$ axial symmetry
- outstanding puzzle #2: role of light quark masses

The QCD Finite-T Transition

- *m_q* = 0:
 - U(1)_A thought to be clearly broken at T_{χSB}
 → 4 light d.o.f. (σ, π), O(4)-class 2nd order criticality
 - Pisarski, Wilczek (1984): if U(1)_A breaking at T_{χSB} is mild, have 8 light d.o.f. → NOT O(4)-class - SU(2)_L x SU(2)_R / U(2)_V? → maybe even 1st order

 $\rightarrow U(1)_A$ of fundamental importance and NOT understood

- *m_q* physical:
 - transition appears to be analytic crossover
- 2+1 flavors and very light m_i:
 - nature of transition unknown

Domain Wall Fermions

- chiral fermions expensive but essential
- staggered fermions:
 - explicitly break $U(1)_A$ and 5/6 of $SU(2)_L \times SU(2)_R$
 - very costly continuum limit absolutely necessary
- domain wall fermions:
 - three, degenerate pions and exact anomalous current conservation at finite lattice spacing (for infinite L_s)
 - near-continuum results for sufficiently large L_s

Domain Wall Fermions

- Wilson, w/ chiralities separated in 5th dimension
- LH and RH fields localized on domain walls, x_s=0 and L_s, overlap in bulk for finite L_s
- Want " $L_s \sim \infty$ " **expensive** but manageable

Then there are two chiral zeromode solutions Ψ_0^{\pm} given by

$$\Psi_0^{\pm}(\vec{p},z) = e^{i\vec{p}\cdot\vec{x}}\phi_{\pm}(s,\vec{p})u_{\pm}$$

where the transverse wavefunctions are given by

$$\phi_+(s,\vec{p}) = e^{-\mu_0|s|}$$

$$\phi_-(s,\vec{p}) = (-1)^{n_s} \phi_+(s,\vec{p}) .$$

Lawrence Livermore National Laboratory

Domain Wall Fermions

- Substantial cost reductions:
 - Dislocation Suppressing Determinant Ratios (DSDR)
 - introduce ratio of Wilson fermions
 with negative unphysical mass
 - suppress "dislocations" low modes due to O(a) effects – without freezing topology
 - achieve target m_{res} at reduced L_s
 - Möbius Formulation
 - generalize Shamir formulation with overall scaling factor
 - improve sign function approximation in low-mode, residual-χSB region
 - achieve target m_{res} at further reduced L_s

~3X faster for m_{π} ~200 MeV

~10X faster for m_{π} ~135 MeV

additional 2X faster for m_{π} ~135 MeV

(not utilized for m_{π} ~200 MeV)

Chiral Susceptibilities

- pseudo-/scalar, non-/singlet susceptibilities probe both chiral and U(1)_A symmetries
 - more sensitive than condensate
 - independent probes of chiral and $U(1)_A$ symmetry breaking
 - precision boost from random Z₂ wall source
 - renormalized to $\overline{MS}(\mu=2 \text{ GeV})$ with $(Z_{m \to \overline{MS}})^{-2}$

$\chi_{I,\text{disc}}$ and $T_{\chi SB} - m_{\pi}$ = 200 MeV

Better probe of χSB: chiral susceptibility

$$\chi_{l,\text{disc}} = \left(\frac{\partial}{\partial m_l} \langle \bar{\psi}\psi \rangle_l\right)_{\text{disc}} = \frac{1}{N_\sigma^3 N_\tau} \left\{ \left\langle (\text{Tr}M_l^{-1})^2 \right\rangle - \left\langle \text{Tr}M_l^{-1} \right\rangle^2 \right\}$$

- clearly peaked at $T_{\chi SB}$
- UV divergence logarithmic and suppressed by m_l^3

$\chi_{I,\text{disc}}$ and $T_{\chi SB} - m_{\pi}$ = 200 MeV

- *T*_{χSB} ~ 165 MeV
- finite volume effects:
 - ~20% for *L*/*a* = 16, T < 160 MeV
 - very small for T > 160 MeV
 - < 5% for L/a = 24
- comparison with staggered
 - DWF w/ m_π = 200 MeV and N_τ=8 coincides remarkably well with HISQ w/ m_π = 160 MeV and N_τ=12
 - taste breaking? other cutoff effects?
 - need continuum limits
 - AsqTad w/ m_{π} = 180 MeV and N_r=12 appears to be far from continuum for T < 180 MeV

10

$\chi_{I,\text{disc}}$ and $T_{\chi SB} - m_{\pi}$ = 135 MeV

- *T*_{χSB} ~ 155 MeV
 - good agreement with staggered
- finite volume effects:
 - ~20% for L/a = 32?
 - $L \sim 4 N_{\tau}$ insufficient?
 - need more stats for L/a = 64
- mass dependence
 - $T_{\chi SB} \sim 6\%$ lower than for 200 MeV
 - peak ~ 2x higher than for 200 MeV
 - compatible with O(4) scaling, $m_{\pi}^{-1.6}$
 - finite volume?

$$U(1)_A$$
 near $T_{\chi SB}$

- $\chi_{\pi} \chi_{\delta} = \chi_{\sigma} \chi_{\eta}$
 - \rightarrow chiral symmetry restoration
 - $\rightarrow T_{\chi SB} \sim 170 \text{ MeV}$

- $\chi_{\pi} \chi_{\delta}, \chi_{\sigma} \chi_{\eta} \neq 0$ $\rightarrow U(1)_{A}$ not restored
 - not explicit breaking: $(m_{\rm res}/T)^2 \sim 10^{-3}$, negligible
 - not finite volume: same picture for L/a = 24 and 32

The Dirac Eigenvalue Spectrum

- zero intercept indicates chiral symmetry restoration above T ~ 170 MeV
- spectral form of $\chi_{\pi} \chi_{\delta}$

$$\Delta_{\pi-\delta} \equiv \chi_{\pi} - \chi_{\delta} = \int \mathrm{d}\lambda \,\,
ho(\lambda) rac{4m_l^2}{\left(m_l^2 + \lambda^2
ight)^2}$$

- agrees with correlator sum and
- reveals U(1)_A breaking is dominated by cluster of near-zero modes

Lawrence Livermore National Laboratory

The Dirac Eigenvalue Spectrum

- Dilute Instanton Gas vs. Topology
 - Volume dependence:

topology: $\rho \propto 1/\sqrt{V}$ DIGA: ρ independent of V

Results support ... DIGA

• Distribution of chiralities:

topology:bimodal (all the same for each cfg)DIGA:binomial (democratic)

Results support ... DIGA

→ Results support DIGA description of anomalous $U(1)_A$ breaking

N_+	0	1	2	3	4	5
$N_0 = 1$	28	19	-	-	-	_
$N_0 = 2$	16	19	12	-	-	-
$N_0 = 3$	4	11	8	3	-	-
$N_0 = 4$	1	3	4	3	0	-
$N_0 = 5$	0	2	1	1	1	0

New and Improved Subtracted Chiral Condensate

- UV divergence in $\Sigma_l\equiv -rac{1}{2}\langlear\psi\psi
 angle_l$ usually removed by subtracting $rac{\widetilde{m}_l}{\widetilde{m}_s}\Sigma_s$
- Better: use DWF GMOR $m_l \chi_{\pi} + \frac{1}{4} \int d^4 x \langle 0 | T(i J_{5q}(x)^a \pi^a(0)) \rangle = \Sigma_l$
- Even better: use GMOR relation to define $\Delta_{l,s} = \widetilde{m}_l \left(\chi_{\pi_l} - \chi_{\pi_s} \right)$
 - identical continuum limit
 - no $m_{\rm res}/a^2$ term \rightarrow more physical
 - better for comparison with other actions (e.g. HISQ)

Much more to do for m_{π} = 135 MeV

- $\delta/\eta/\pi/\sigma$ susceptibilities $\rightarrow U(1)_A$ breaking
- Dirac spectrum \rightarrow comparison with DIGA
- understand finite-volume effects
- confirm/improve scale setting

*m*_π ~ 100 MeV

1st order phase transition for small m_{π} ?

investigation underway with m_{π} = 100 MeV and 64³x8 (but **slow**)

Lawrence Livermore National Laboratory

- Domain Wall Fermions
 - chiral and $U(1)_A$ symmetries unbroken by discretization \rightarrow can study both chiral and $U(1)_A$ symmetry breaking
 - 3 pions (just like reality!)
- Physical (and 200 MeV) pion (and kaon) masses
 - m_{π} = 200 MeV, N_{τ} = 8, N_{σ} = 32 (and 16 and 24) (LLNL/RBC)
 - m_{π} = 135 MeV, N_{τ} = 8, N_{σ} = 32 (and 64)

(HotQCD)

- Chiral Symmetry Breaking
 - confirm staggered results for $T_{\gamma SB}$ (quasi-critical temperature)
 - tension with staggered results for $\chi_{l,\text{disc}}$ and m_{π} dependence
- U(1) Axial Symmetry Breaking
 - $U(1)_A$ broken above $T_{\chi SB}$
 - confirm features of dilute instanton gas approximation

- Calculations not possible without state of the art HPC
 - algorithms: DSDR, Möbius
 - software: BAGEL (for BG/Q), CPS
 - machines: LLNL/IBM Sequoia/Vulcan Blue Gene/Q

Thank you for your attention!

Thanks to the organizers for 15 minutes of fame.

Thanks to all my collaborators for their hard work.

A. Bazavov, T. Bhattacharya, M. Buchoff, **P. Boyle**, M. Cheng, **N. Christ**, C. DeTar, **H.-T. Ding**, S. Gottlieb, R. Gupta, P. Hedge, U.M. Heller, **C. Jung**, **F. Karsch**, E. Laermann, L. Levkova, **Z. Lin**, **R.D. Mahwinney**, S. Mukherjee, P. Petreczky, D. Renfrew, C. Schmidt, **C. Schroeder**, R.A. Soltz, C. Soeldner, R. Sugar, D. Toussaint, W. Unger, **P. Vranas**, H. Yin

Thanks to LLNL and BNL for HPC resources and support.

Thanks to the DOE and NSF for funding this work.

additional material

Parameter Determination

• m_s and $m_{u,d}$ tuned to 5% level to obtain m_K = 495 MeV and m_{π} = 200 (or 135) MeV

 lattice spacing determined using Sommer method with RBC/UKQCD r₀, r₁ (using m_Ω at β=1.75)

