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§  Domain Wall Fermions 
•  chiral and U(1)A symmetries unbroken by discretization 
à can study both chiral and U(1)A symmetry breaking 

•  3 pions (just like reality!) 

§  Physical (and 200 MeV) pion (and kaon) masses 
•  mπ = 200 MeV, Nτ = 8, Nσ = 32 (and 16 and 24)  (LLNL/RBC) 
•  mπ = 135 MeV, Nτ = 8, Nσ = 32 (and 64)   (HotQCD) 

The Bottom Line 
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§  Chiral Symmetry Breaking 
•  confirm staggered results for TχSB (quasi-critical temperature)	


•  tension with staggered results for χl,disc and mπ dependence 

§  U(1) Axial Symmetry Breaking 
•  U(1)A broken above TχSB

	


•  confirm features of dilute instanton gas approximation 

The Bottom Line 
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§  Calculations not possible without state of the art HPC 
•  algorithms:  DSDR, Möbius 
•  software:   BAGEL (for BG/Q), CPS 
•  machines:  LLNL/IBM Sequoia/Vulcan Blue Gene/Q 

The Bottom Line 
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§  the QCD finite-temperature transition 

§  domain wall fermions 

§  chiral susceptibilities and chiral symmetry 

§  chiral susceptibilities and U(1)A 

§  the Dirac spectrum and dilute instanton gas approximation 

§  a new and improved subtracted chiral condensate 

Outline 
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The spontaneous breaking of chiral symmetry 

SU(2)L x SU(2)R à SU(2)V 

is a crucial aspect of the history and present state of our Universe 

§  studied intensely for over 30 years, experimentally and theoretically 

§  outstanding puzzle #1: role of anomalous U(1)A axial symmetry 

§  outstanding puzzle #2: role of light quark masses  

The QCD Finite-T Transition  
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§  mq = 0: 
•  U(1)A thought to be clearly broken at TχSB 

à 4 light d.o.f. (σ, π), O(4)-class 2nd order criticality 

•  Pisarski, Wilczek (1984): 
if U(1)A breaking at TχSB is mild, have 8 light d.o.f. 
à NOT O(4)-class – SU(2)L x SU(2)R / U(2)V? 
à maybe even 1st order 

à U(1)A of fundamental importance and NOT understood 

§  mq physical: 
•  transition appears to be analytic crossover 

§  2+1 flavors and very light ml: 

•  nature of transition unknown 

The QCD Finite-T Transition  
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§  chiral fermions expensive but essential 

§  staggered fermions: 
•  explicitly break U(1)A and 5/6 of SU(2)L x SU(2)R 

•  very costly continuum limit absolutely necessary 

§  domain wall fermions: 
•   three, degenerate pions and exact anomalous current conservation 

at finite lattice spacing (for infinite Ls) 
•  near-continuum results for sufficiently large Ls 

Domain Wall Fermions 
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dimensional theory are realized through finite Feynman diagrams and therefore have their

canonical form even in the regularized theory.

A similar model can be formulated on a 2n+1 dimensional lattice with lattice spacing

a and sites labelled by z = nza. The action is given by

SD =
∑

z

ΨzK̂DΨz (7)

where the lattice Dirac operator is given by

K̂DΨz =
1

2a

2n+1
∑

µ=1

γµ(Ψz+µ̂ − Ψz−µ̂) + m(s)Ψz (8)

and µ̂ corresponds to a displacement by a in the zµ direction. For simplicity I take the

fermion mass to be a step function

m(s) = m0θ(s) ≡
sinh(aµ0)

a
θ(s) , θ(s) =

{−1, s ≤ −a
0, s = 0

+1, s ≥ +a
. (9)

Then there are two chiral zeromode solutions Ψ±
0 given by

Ψ±
0 (#p , z) = ei!p·!xφ±(s, #p )u± (10)

where the transverse wavefunctions are given by

φ+(s, #p ) = e−µ0|s|

φ−(s, #p ) = (−1)nsφ+(s, #p ) .
(11)

These solutions satisfy

K̂DΨ±
0 (#p , z) = (i/a)#γ · sin(#p a)Ψ+

0 (#p , z) , Γ5Ψ
±
0 = ±Ψ±

0 (12)

and, unlike the continuum example, are both normalizable and localized along the mass

defect at s = 0. For |#pa| % 1, i#γ · sin(#p a)/a → i/p, the inverse propagator for a massless

mode travelling in 2n dimensions. Therefore the mode Ψ+
0 for small #p corresponds to the

positive chirality state (4) found in the continuum. However, the lattice model is seen to

actually describe 22n+1 massless modes in the continuum, rather than one, corresponding

to Ψ+
0 and Ψ−

0 with #p near the 22n corners of the 2n dimensional Brillouin zone. The

conventional analysis of doubler modes [2] reveals that these 22n+1 modes correspond to

4

§  Wilson, w/ chiralities separated in 5th dimension 

§  LH and RH fields localized on domain walls, xs=0 and Ls, overlap in 
bulk for finite Ls 

§  Want “Ls~∞” – expensive but manageable 

Domain Wall Fermions 

Domain Wall Fermion Operator

• Introduce extra dimension, labeled by s

Dx,s;x′,s′ = δs,s′D
‖
x,x′ + δx,x′D⊥

s,s′

• D‖
x,x′ is a Wilson Dirac operator with an opposite sign for the mass term.

D‖
x,x′ =

1

2

4
X

µ=1

h

(1−γµ)Ux,µδx+µ̂,x′ + (1+γµ)U†
x′,µδx−µ̂,x′

i

+ (M5 − 4)δx,x′

• D⊥
s,s′ couples points in fifth dimension, distinguishing left and right handed fermions

1
2

h

(1−γ5)δs+1,s′+(1+γ5)δs−1,s′−2δs,s′

i

−
mf

2

h

(1−γ5)δs,Ls−1δ0,s′+(1+γ5)δs,0δLs−1,s′

i

x

s

y

s

Σψ 2

y,z,t

x

SCIDAC JLAB 6/1/05 4
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§  Substantial cost reductions: 
 

�  Dislocation Suppressing Determinant Ratios 
(DSDR) 
�  introduce ratio of Wilson fermions 

with negative unphysical mass 
�  suppress “dislocations” - low modes due to 

O(a) effects – without freezing topology 
�  achieve target mres at reduced Ls 

 

�  Möbius Formulation 
�  generalize Shamir formulation with overall scaling 

factor 
�  improve sign function approximation 

in low-mode, residual-χSB region 
�  achieve target mres at further reduced Ls 

Domain Wall Fermions 
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~3X faster for mπ~200 MeV 
 
~10X faster for mπ~135 MeV	


additional 2X faster for mπ~135 MeV	

 
(not utilized for mπ~200 MeV) 



Lawrence Livermore National Laboratory LLNL-PRES-641426 
11 

§  pseudo-/scalar, non-/singlet susceptibilities probe both 
chiral and U(1)A symmetries 
•  more sensitive than condensate 
•  independent probes of chiral and U(1)A symmetry breaking 

•  precision boost from random Z2 wall source 
•  renormalized to MS(µ=2 GeV) with (ZmàMS)-2 

Chiral Susceptibilities 
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§  Better probe of χSB: chiral susceptibility 

•  clearly peaked at TχSB 

•  UV divergence logarithmic and suppressed by ml
3 

χl,disc and TχSB – mπ = 200 MeV 
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§  TχSB ~ 165 MeV 

§  finite volume effects: 
•  ~20% for L/a = 16, T < 160 MeV 
•  very small for T > 160 MeV 
•  < 5% for L/a = 24 

§  comparison with staggered 
•  DWF w/ mπ = 200 MeV and Nτ=8 

coincides remarkably well with 
HISQ w/ mπ = 160 MeV and Nτ=12 
—  taste breaking? other cutoff effects? 
—  need continuum limits 

•  AsqTad w/ mπ = 180 MeV and Nτ=12 
appears to be far from continuum for  
T < 180 MeV 
 

χl,disc and TχSB – mπ = 200 MeV 

for T ≥ 175 MeV. However, the ASQTAD results lie substantially below the DWF481

and HISQ results for temperatures at and below the transition region. The HISQ482

results are good agreement with the 323 × 8 DWF results. However, this agreement483

appears to be coincidental, since the HISQ results are obtained for a quoted pion484

mass of 161 MeV, significantly smaller than the 200 MeV pion mass of the DWF485

ensembles. The expected strong dependence of χdisc near Tc on the pion mass suggests486

that mπ = 160 MeV DWF results would lie above those found with HISQ. The487

discrepancy between the DWF and ASQTAD results and the expected discrepancy488

with comparable HISQ results are likely explained by lattice discretization errors489

associated with staggered taste symmetry breaking.490
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FIG. 5. The left panel compares χdisc computed using DWF on 323, 243 and 163 volumes.

Significant volume dependence can be seen between 323 and 163, while the 243 results agree

with those from 323 within errors. The right panel compares the 323, Nτ = 8 DWF results

for χdisc with those from staggered fermions on a 483×12 volume using both the ASQTAD

and HISQ actions [20]. In each case χdisc is renormalized in the MS(µ = 2 GeV) scheme.
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§  TχSB ~ 155 MeV 
•  good agreement with staggered 

§  finite volume effects: 
•  ~20% for L/a = 32? 
•  L ~ 4 Nτ insufficient? 
•  need more stats for L/a = 64 

§  mass dependence 
•  TχSB ~ 6% lower than for 200 MeV 
•  peak ~ 2x higher than for 200 MeV 
—  compatible with O(4) scaling, mπ

-1.6 
—  finite volume? 

χl,disc and TχSB – mπ = 135 MeV 
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U(1)A near TχSB 
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FIG. 6. The two U(1)A-violating susceptibility differences, χπ−χδ and χσ−χη plotted as a

function of temperature for our three spatial volumes. As expected these quantities are very

different below Tc. However, even for temperatures of 160 MeV and above these quanties

differ from zero by many standard deviations, providing clear evidence for anomalous

symmetry breaking above Tc. The near equality of these two differences above Tc, which are

related by SU(2)L×SU(2)R symmetry suggests that the effects of explicit chiral symmetry

breaking are much smaller (as expected) than this anomalous symmetry breaking.

breaking is provided by the near equality of the two differences χπ −χδ and χσ −χη517

which are related by SU(2)L×SU(2)R symmetry, a symmetry also explicitly broken518

ml and mres. Thus, we interpret the results for χπ − χδ and χσ − χη shown in519
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§  χπ - χδ = χσ - χη  
 

à chiral symmetry restoration 
 

à TχSB ~ 170 MeV 

§  χπ – χδ, χσ - χη ≠ 0 
 

à U(1)A not restored 
  
•  not explicit breaking: 

(mres/T)2 ~ 10-3, negligible 
  

•  not finite volume: 
same picture for L/a = 24 and 32 
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§  zero intercept indicates  
chiral symmetry restoration 
above T ~ 170 MeV 

§  spectral form of χπ – χδ  
 
 
 
•  agrees with correlator sum 
and  
•  reveals U(1)A breaking 

is dominated by cluster of  
near-zero modes 

The Dirac Eigenvalue Spectrum 
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FIG. 9. The eigenvalue spectrum for T = 149−195 MeV, expressed in the MS scheme at the

scale µ = 2 GeV. The imaginary, “unphysical” eigenvalues are plotted as −
√

|Λ2 − m̃2
l |.

The spectra from the 323 × 8 ensembles are plotted as histograms and fit with a linear

(T = 149 − 178 MeV) or a quadratic (T = 186 − 195 MeV) function (blue dashed line).

The spectrum from each of the 163 × 8 ensembles [7] is plotted as a black solid line.
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FIG. 9. The eigenvalue spectrum for T = 149−195 MeV, expressed in the MS scheme at the

scale µ = 2 GeV. The imaginary, “unphysical” eigenvalues are plotted as −
√

|Λ2 − m̃2
l |.

The spectra from the 323 × 8 ensembles are plotted as histograms and fit with a linear

(T = 149 − 178 MeV) or a quadratic (T = 186 − 195 MeV) function (blue dashed line).

The spectrum from each of the 163 × 8 ensembles [7] is plotted as a black solid line.
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. . . . . .

Dirac Spectrum and Symmetries

The low-lying eigenmodes of Dirac operator are directly related to
the symmetries and phase transition of QCD.

! Chiral Condensate

−〈ψ̄ψ〉q =

∫
dλ ρ(λ)

2mq

m2
q + λ2

, q = l , s (3)

! U(1)A symmetry

∆π−δ ≡ χπ − χδ =

∫
dλ ρ(λ)

4m2
l(

m2
l + λ2

)2 . (4)

! Above Tc : ρ(λ → 0) ∼ δ(λ)? λ? m?

N+ 0 1 2 3 4 5

N0 = 1 28 19 - - - -

N0 = 2 16 19 12 - - -

N0 = 3 4 11 8 3 - -

N0 = 4 1 3 4 3 0 -

N0 = 5 0 2 1 1 1 0

TABLE IX. The number of configurations found in the 177 MeV (6) ensemble with given

values for the total number (N0) of near-zero modes and total number (N+) of those modes

with positive chirality. We consider only modes with Λ ≤ 15 MeV with a chirality whose

magnitude exceeds 0.7. The distribution is clearly different from the bimodal distrubtion

N+ = N0 or 0 expected if these near zero modes were induced by non-zero global topology

and the Atiyah-Singer theorem.
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FIG. 10. (Left to right) The renormalized eigenvalue spectrum for T = 177 − 195 MeV

without the removal of the bare quark mass. Statistics are insufficient for 186 MeV on

163 × 8 ensemble; only 5 instances of ”near-zero modes” are collected.

below Tc. Without data at one or more additional values of the light quark mass, we981

are unable to make a proper comparison with the predictions of O(4) universality.982

However, if we assume that the universal, singular term dominates our results for983
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§  Dilute Instanton Gas vs. Topology 

•  Volume dependence: 

 topology:   

 DIGA: 

 Results support … DIGA 

•  Distribution of chiralities: 

 topology:  bimodal (all the same for each cfg) 

 DIGA:  binomial (democratic) 

 Results support … DIGA 

 à  Results support DIGA description 
  of anomalous U(1)A breaking 

The Dirac Eigenvalue Spectrum 

N+ 0 1 2 3 4 5

N0 = 1 28 19 - - - -

N0 = 2 16 19 12 - - -

N0 = 3 4 11 8 3 - -

N0 = 4 1 3 4 3 0 -

N0 = 5 0 2 1 1 1 0

TABLE IX. The number of configurations found in the 177 MeV (6) ensemble with given

values for the total number (N0) of near-zero modes and total number (N+) of those modes

with positive chirality. We consider only modes with Λ ≤ 15 MeV with a chirality whose

magnitude exceeds 0.7. The distribution is clearly different from the bimodal distrubtion

N+ = N0 or 0 expected if these near zero modes were induced by non-zero global topology

and the Atiyah-Singer theorem.
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below Tc. Without data at one or more additional values of the light quark mass, we981

are unable to make a proper comparison with the predictions of O(4) universality.982

However, if we assume that the universal, singular term dominates our results for983
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§  UV divergence in                                usually removed by subtracting  

§  Better: use DWF GMOR 

 

§  Even better: 
use GMOR relation to define 

•  identical continuum limit 
•  no mres/a2 term à more physical 
•  better for comparison with other  

actions (e.g. HISQ) 

New and Improved  
Subtracted Chiral Condensate 
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difference between the chiral condensates of the light and strange quarks [14]:207

∆l,s = Σl −
m̃l

m̃s
Σs. (4)208

Here Σs is defined using the strange quark Dirac matrix in a manner analogous to209

Eq. (3). For domain wall fermions there is a further difficulty associated with the210

short distance contributions to Σq and the subtracted quantity ∆l,s. For a finite fifth211

dimensional extent, Ls < ∞, the DWF chiral symmetry is only approximate and212

residual chirally symmetry breaking effects appear. The largest such effect is a small213

additive shift in the quark mass: the residual mass mres mentioned above. Similar214

residual chiral breaking will appear in Σq and will be of order mres/a2 if we express215

mres in physical units. However, since the detailed mechanism which generates the216

residual mass is not directly related to that which introduces the additive constant217

into Σq, the subtraction coefficient α that would be needed to remove both the mq/a2218

and the O(mres/a2) terms in Σl − αΣs is not known.219

Thus, the subtracted quantity ∆l,s defined in Eq. (4) will contain an unphysical,220

O(mres/a2) constant which will decrease the utility of ∆l,s computed in a DWF221

simulation. In particular, we cannot compare ∆l,s with the same difference of chiral222

condensates obtained from other lattice fermion formulations. While this added223

unphysical constant does not depend on temperature, it does depend strongly on224

the gauge coupling g so the usual procedure of varying the temperature by varying225

g at fixed Nτ will induce an apparent temperature dependence in this unphysical226

contribution to ∆l,s. However, the definition of ∆l,s given in Eq. (4) (which differs227

from that used in the earlier paper [7]) does have a useful property. As is discussed228

in Sec. V, this subtraction using for α the physical quark mass ratio, α = m̃l/m̃s will229

lead to a more convergent spectral expression for ∆l,s.230

Results for the quantities Σl, Σs and ∆l,s are given in Tab. III. For each configu-231

ration used in the calculation, the volume-averaged, chiral condensate is computed232
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FIG. 1. The left panel shows the light-quark chiral condensate, Σl, and the sum of mlχπ

and the mixed π − J5q/4 susceptibility to which it should be equal according to the Ward

identity in Eq. (31). Also shown is (ml +mres)χπ which would equal Σl if mres were the

only effect of residual chiral symmetry breaking. The right panel shows the same quantities

computed using the strange instead of the light quark. Similar agreement between the right

and left hand sides of Eq. (31) is found for the 243 and 163 volumes, as can be seen from

Tab. II

logarithmic divergences present on both sides are equal. For a DWF theory with399

residual chiral symmetry breaking this equation does not hold and the left hand side400

∆l,s contains an unphysical additive constant O(mres/a2). However, the right-hand401

side is much better defined with no 1/a2 term. Thus, we can use the right-hand side402

of Eq. 32 to provide a more physical result for ∆l,s which will contain only a small,403

unphysical piece of order mlm2
s ln(msa). Thus, we can define an improved value for404

∆l,s:405

∆̃l,s = m̃l (χπl
− χπs) (33)406

which we will use to compare with spectral formulae and with the results for ∆l,s407

from other lattice fermion formulations.408
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Introduction to LATEX
c�2006 by Harvey Gould

December 5, 2006

1 Introduction

TEX looks more di�cult than it is. It is almost as easy as ⇡. See how easy it is to
make special symbols such as ↵, �, �, �, sin x, h̄, �, . . . We also can make subscripts
A

x

, A
xy

and superscripts, ex, ex
2
, and e

a

b
. We will use LATEX, which is based on

TEX and has many higher-level commands (macros) for formatting, making tables,
etc. More information can be found in Ref. [1].

We just made a new paragraph. Extra lines and spaces make no di↵erence. Note
that all formulas are enclosed by $ and occur in math mode.

The default font is Computer Modern. It includes italics, boldface, slanted,
and monospaced fonts.

2 Equations

Let us see how easy it is to write equations.

� =
NX

i=1

w

i

(x
i

� x̄)2. (2)

It is a good idea to number equations, but we can have a equation without a number
by writing

P (x) =
x� a

b� a
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and

g =
1

2

p
2⇡.
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§  δ/η/π/σ susceptibilities à U(1)A breaking 

§  Dirac spectrum à comparison with DIGA 

§  understand finite-volume effects 

§  confirm/improve scale setting 

§  … 

Much more to do for mπ = 135 MeV 
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§  1st order phase transition  
for small mπ? 

 

§  investigation underway with 
mπ = 100 MeV and 643x8 
(but slow) 

mπ ~ 100 MeV 

Introduction
The Goldstone E�ect

Chiral Condensate Susceptibility
Staggered Chiral Perturbation Theory

Some Preliminary Results on Chiral Susceptibility
Conclusion and Outlook

Chiral Phase Transition in QCD
Spontaneous Symmetry Breaking in O(N) Models

The QCD phase transitions at zero density

Columbia Plot: quark mass dependence of the order of the transition

at physical quark masses, a
crossover is expected

for su�ciently small quark masses
(both mu,d and ms) the transition
is first order.

critical lines of second order
transition - limiting cases:
Nf = 2: O(4) universality class
Nf = 3: Ising universality class

In this talk: interested in the chiral limit

lim mq � 0 and ms fixed at physical value.

Wolfgang Unger, Universität Bielefeld Bielefeld-RBC Collaboration Internat. Research Training Group Bielefeld - GRK 881The Chiral Phase Transition in QCD: on the quark mass dependence of Goldstone fluctuations

No sign of metastability at T=160 MeV 
(T = 140 MeV in the queue) 

disordered start 

ordered start 

PRELIMINARY 
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§  Domain Wall Fermions 
•  chiral and U(1)A symmetries unbroken by discretization 
à can study both chiral and U(1)A symmetry breaking 

•  3 pions (just like reality!) 

§  Physical (and 200 MeV) pion (and kaon) masses 
•  mπ = 200 MeV, Nτ = 8, Nσ = 32 (and 16 and 24)  (LLNL/RBC) 
•  mπ = 135 MeV, Nτ = 8, Nσ = 32 (and 64)   (HotQCD) 

The Bottom Line 



Lawrence Livermore National Laboratory LLNL-PRES-641426 
22 

§  Chiral Symmetry Breaking 
•  confirm staggered results for TχSB (quasi-critical temperature)	


•  tension with staggered results for χl,disc and mπ dependence 

§  U(1) Axial Symmetry Breaking 
•  U(1)A broken above TχSB

	


•  confirm features of dilute instanton gas approximation 

The Bottom Line 
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§  Calculations not possible without state of the art HPC 
•  algorithms:  DSDR, Möbius 
•  software:   BAGEL (for BG/Q), CPS 
•  machines:  LLNL/IBM Sequoia/Vulcan Blue Gene/Q 

The Bottom Line 
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A. Bazavov, T. Bhattacharya, M. Buchoff, P. Boyle, M. Cheng, N. Christ, C. DeTar, H.-T. Ding, S. Gottlieb, R. 
Gupta, P. Hedge, U.M. Heller, C. Jung, F. Karsch, E. Laermann, L. Levkova, Z. Lin,  R.D. Mahwinney, S. 
Mukherjee, P. Petreczky, D. Renfrew, C. Schmidt, C. Schroeder, R.A. Soltz, C. Soeldner, R. Sugar, D. 
Toussaint, W. Unger, P. Vranas, H. Yin
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additional material 
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FIG. 1. Left panel: temperature for Nτ = 8 is plotted versus β. The solid curve is the fit to

the continuum RG running; c0 = 25.2(3) MeV. The dashed curve is the result of the fit to

Eq. (4) which includes an added a2 correction; c0 = 29.7(2.9) MeV, c1 = −204(132) MeV.

Right panel: mresa is plotted versus β with an exponential fit: mres(β) = A exp (−Bβ);

A = 8.7(9.7) × 108, B = 15.4(6).

data [38] and sufficiently accurate for the present purpose.

This allows us to determine the bare quark masses required for a specific line of

constant physics on the zero temperature ensembles listed in Tab. III. Figure 2 shows

the quark masses required for mπ = 200 MeV. We also fit these results for mtot(β)

to the lattice-corrected two-loop running of the mass anomalous dimension:

mtot ≡ (ml +mres) =
(
A+Bâ2(β)

)(12b0
β

)4/9

(6)

The lattice-corrected fit provides a good interpolation that allows us to achieve a

line of constant physics on the finite temperature ensembles.

III. DETERMINING THE DIRAC EIGENVALUE SPECTRUM

The spectrum of eigenvalues of the hermitian Dirac operator provides important

insight into the physics of QCD. The Dirac spectrum depends dramatically on the

18

Parameter Determination 
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FIG. 2. Total light quark mass for mπ = 200 MeV line of constant physics, with a fit to the

lattice-corrected mass anomalous dimension. Dashed curves represent the 1-σ error band.

temperature and is fundamentally connected with both spontaneous and anomalous

chiral symmetry breaking. These topics will be explored in detail in later sections of

this paper.

In this section we will explain how the continuum Dirac spectrum can be deter-

mined from the spectrum of the five-dimensional DWF Dirac operator, including a

method to determine its normalization. The Ritz method used to determine the low-

est 100 eigenvalues for each of our finite temperature ensembles will then be briefly

described as well as the numerical details of our determination of the normaliza-

tion of those eigenvalues. A derivation for this normalization method, following the

approach of Giusti and Lüscher [28], is given in Appendix A. The resulting Dirac

eigenvalue spectrum, computed and normalized following the methods described in

this section, will be presented and analyzed in Sec. VI, in an effort to determine the

temperature dependence and the origin of anomalous U(1)A symmetry breaking.
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§  ms and mu,d tuned to 5% level 
to obtain mΚ = 495 MeV and 
mπ = 200 (or 135) MeV 

 

 

 

§  lattice spacing determined  
using Sommer method with 
RBC/UKQCD r0, r1 
(using mΩ at β=1.75) 

continuum 
running 

continuum plus O(a2) 


