Numerical Stochastic Perturbation Theory and The Gradient Flow

Mattia Dalla Brida* Trinity College Dublin, Ireland

Dirk Hesse Università degli Studi di Parma, Italia

 $31^{\rm st}$ International Symposium on Lattice Field Theory, $29^{\rm th}$ of July 2013, Mainz, Germany

Sac

COLLEGE DUBLIN

Motivations

Goal: The running coupling of QCD

Finite-size scaling techniques provide a general solution to scale-dependent renormalization problems.

(U. Wolff '86; M. Lüscher, P. Weisz, U. Wolff '91)

- The finite-volume scheme i.e. the fields' boundary conditions
 → Schrödinger functional (K. Symanzik '81; M. Lüscher et. al. '92)
- The non-perturbative definition of the coupling
 → gradient flow coupling

(M. Lüscher '10)

Start:

- We consider pure SU(3) Yang-Mills theory
- From PT we can obtain important insights into this new tool \rightarrow NSPT is a natural framework for the gradient flow!

The gradient flow coupling

 The gradient flow evolves the gauge field as a function of the flow time parameter t ≥ 0 according to,

$$\partial_t B_{\mu} = D_{\nu} G_{\nu\mu} + \alpha_0 D_{\mu} \partial_{\nu} B_{\nu}, \quad B_{\mu}|_{t=0} = A_{\mu},$$

where

$$G_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} + [B_{\mu}, B_{\nu}], \quad D_{\mu} = \partial_{\mu} + [B_{\mu}, \cdot].$$

 Correlation functions of the field B are automatically finite for flow times t > 0, once the theory in 4d is renormalized in the usual way.

```
(M. Lüscher, P. Weisz '11)
```

Energy density

$$ig\langle E(t)ig
angle = -1/2 ig\langle \mathrm{Tr} \, G_{\mu
u}(t) G_{\mu
u}(t)ig
angle.$$

From flow observables one can define a renormalized coupling, e.g.

(M. Lüscher '10)

$$\bar{g}^2(\mu) \equiv \mathcal{N}^{-1} \langle t^2 E(t) \rangle, \quad \mu = \sqrt{1/8t},$$

where \mathcal{N} is such that $\bar{g}^2 = g_0^2 + O(g_0^4)$.

The Schrödinger Functional and \bar{g}_{GF}

- We consider **SF** boundary conditions with **zero boundary fields**, which have to be **maintained** at all flow times *t*.
- To apply **finite-volume scaling**, one has to run the renormalization scale with the size of the finite volume box given by *L*,

$$\mu = 1/L,$$

and rescale with L all dimensionful parameters, e.g.,

$$c=\sqrt{8t}/L, \quad T=L.$$

(Z. Fodor et. al. '12; P. Fritzsch, A. Ramos '13)

• A c-family of running couplings can be introduced as,

$$ar{g}_{ ext{GF}}^2(L)\equiv \mathcal{N}^{-1}\langle t^2 E(t,T/2)
angle igg|_{t=c^2L^2/8},$$

where \mathcal{N} depends on the specific scheme.

(P. Fritzsch, A. Ramos '13)

The gradient flow on the lattice

• The gradient flow can be studied on the lattice as,

$$\partial_t V_{x\mu}(t) = -\{g_0^2 \nabla_{x\mu} S_G(V(t))\} V_{x\mu}(t), \quad V_{x\mu}|_{t=0} = U_{x\mu},$$

where ∇ is the Lie-derivative on the gauge group, and S_G is, e.g., the Wilson gauge action \implies Wilson flow! (M. Lüscher '10)

 The SF boundary conditions for zero boundary fields, are realized on the lattice as,

$$egin{aligned} &V_\mu(x+\hat{k}L,t)=V_\mu(x,t),\ &V_k(x,t)ert_{x_0=0,\mathcal{T}}=\mathbb{I}, \ &orall t\geq 0. \end{aligned}$$

• We consider the regularized energy density,

$$\left\langle \hat{E}(t,x_0) \right\rangle = -1/2 \left\langle \operatorname{Tr} \hat{G}_{\mu\nu}(t,x_0) \hat{G}_{\mu\nu}(t,x_0) \right\rangle,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where \hat{G} is the **clover** definition of the field strength tensor corresponding to the lattice flow V.

Numerical Stochastic Perturbation Theory (D. Hesse's talk)

• Stochastic Quantization introduces a "stochastic time" *t_s*, in which the fundamental fields evolve according to the Langevin equation,

$$\partial_{t_s} U_{x\mu}(t_s) = - \left\{ \nabla_{x\mu} S_G(U(t_s)) + \eta_{x\mu}(t_s) \right\} U_{x\mu}(t_s),$$

where η is a Gaussian distributed noise field. (G. Parisi, Y.S. Wu '81)

• Considering the formal perturbative expansion,

$$U(t_s)
ightarrow \mathcal{V} + \sum_{k>0} g_0^k U^{(k)}(t_s),$$

in the Langevin equation, one can obtain an approximate solution by solving the resulting hierarchy of equations order-by-order in g_0 .

• Stochastic Perturbation Theory (SPT)

$$\lim_{t_s\to\infty} \left\langle \mathcal{O}\left[\sum_k g_0^k U^{(k)}(t_s)\right] \right\rangle_{\eta} = \sum_k g_0^k \mathcal{O}_k[U] = \langle \mathcal{O}[U] \rangle.$$

NSPT considers a discrete approximation of the Langevin equation, and performs this program numerically! (F. Di Renzo et. al. '94)

NSPT and The Gradient Flow

 In the gradient flow, the noise field is not present and the initial distribution of the fundamental gauge field is taken into account,

$$\partial_t V_{x\mu}(t) = -\{g_0^2 \nabla_{x\mu} S_G(V(t))\} V_{x\mu}(t), \quad V_{x\mu}|_{t=0} = U_{x\mu}(t_s).$$

 Analogously to the Langevin equation, considering the formal perturbative expansion,

$$V(t; t_s) o \mathcal{V} + \sum_{k>0} g_0^k V^{(k)}(t; t_s), \quad V^{(k)}|_{t=0} = U^{(k)}(t_s), \, \forall k,$$

one can obtain an approximate solution for the gradient flow!

• SPT for The Gradient Flow

$$\lim_{t_s\to\infty} \langle \mathcal{O}\big[\sum_k g_0^k V^{(k)}(t;t_s)\big] \rangle_{\eta} = \sum_k g_0^k \mathcal{O}_k[V(t)] = \langle \mathcal{O}[V(t)] \rangle.$$

- Using the machinery of NSPT this program can be implemented numerically!
- No gauge fixing step is needed along the flow.

Determination of
$$\langle t^2 \hat{E}(t, T/2) \rangle = \check{\mathcal{E}}^{(0)} g_0^2 + \check{\mathcal{E}}^{(1)} g_0^4 + \check{\mathcal{E}}^{(2)} g_0^6 + \dots$$

(P. Fritzsch, A. Ramos '13)

・ロット 御マ キョット 中国 うくの

Determination of
$$\langle t^2 \hat{E}(t, T/2) \rangle = \check{\mathcal{E}}^{(0)} g_0^2 + \check{\mathcal{E}}^{(1)} g_0^4 + \check{\mathcal{E}}^{(2)} g_0^6 + \dots$$

(P. Fritzsch, A. Ramos '13)

ふして 前 ふぼとえばやえる

Determination of $\langle t^2 \hat{E}(t, T/2) \rangle = \check{\mathcal{E}}^{(0)} g_0^2 + \check{\mathcal{E}}^{(1)} g_0^4 + \check{\mathcal{E}}^{(2)} g_0^6 + \dots$

Determination of $\langle t^2 \hat{E}(t, T/2) \rangle = \check{\mathcal{E}}^{(0)} g_0^2 + \check{\mathcal{E}}^{(1)} g_0^4 + \check{\mathcal{E}}^{(2)} g_0^6 + \dots$

Comparison with Monte Carlo data

◆ロト ◆昼 ト ◆臣 ト ◆臣 - のへで

Comparison with Monte Carlo data

	<i>O</i> (,	$g_0^4)$	$O(g_0^6)$		
С	MC	NSPT	MC	NSPT	
$\langle t^2 \hat{E}_s \rangle$					
0.1936	0.004780(86)	0.004631(22)	0.0034(11)	0.0031669(96)	
0.2958	0.00552(15)	0.005464(49)	0.0054(19)	0.004095(29)	
0.4031	0.00483(18)	0.004776(64)	0.0050(21)	0.003744(44)	
0.5000	0.00355(14)	0.003489(64)	0.0037(17)	0.002785(44)	
$\langle t^2 \hat{E}_m \rangle$					
0.1936	0.004859(90)	0.004615(23)	0.0020(11)	0.003151(10)	
0.2958	0.00557(17)	0.005407(52)	0.0036(21)	0.004031(31)	
0.4031	0.00479(22)	0.004715(66)	0.0041(27)	0.003663(46)	
0.5000	0.00351(21)	0.003499(63)	0.0039(25)	0.002779(47)	

MC data obtained with a customized MILC code, results are for L/a = 8.

Noise to signal ratio vs c

Autocorrelation time vs c

ロト 《母 》 《 臣 》 《 臣 》 「臣 」 の Q ()

Conclusions

- Mild extrapolations, and good statistical behavior for the flow observables we have considered.
- NPST provides a natural setup for a (numerical) perturbative solution of the gradient flow.
- The setup is flexible: different action regularizations, boundary conditions, and observables can be implemented easily.

Outlook

- Continuum limit extrapolations
 - Cut-off effects in the step-scaling function
 - $\Lambda_{\rm GF}$ and PT relation to other schemes

 \rightarrow require bigger lattices (n.b. cost $\propto (L/a)^6$)

Inclusion of fermions and QCD

Numerical precision

The most expensive simulations were performed at L/a = 12. The results of the extrapolations are,

с	$\check{\mathcal{E}}^{(0)}_{s}$	$\frac{\delta \check{\mathcal{E}}_s^{(0)}}{\check{\mathcal{E}}_s^{(0)}}$	$\check{\mathcal{E}}^{(1)}_s$	$\frac{\delta \check{\mathcal{E}}^{(1)}_s}{\check{\mathcal{E}}^{(1)}_s}$
0.2	0.008656(38)	0.5%	0.005827(37)	0.6%
0.3	0.008231(66)	0.8%	0.005958(45)	0.8%
0.4	0.006413(78)	1.2%	0.005004(85)	1.7%
0.5	0.004026(62)	1.5%	0.00345(11)	3.2%

Autocorrelation $au_{
m int}$ ($au_{
m int}/10\,{
m LDU}$) and $N_{
m eff}$ = $N_{
m meas}/(2\, au_{
m int})$,

	ε	0.0125	0.025	0.05		ϵ	0.0125	0.025	0.0
$\check{\mathcal{E}}_{s}^{(0)}$.	$\tau_{\rm int} _{c=0.22} \\ \tau_{\rm int} _{c=0.50}$	4.43(94) 8.2(22)	4.10(87) 5.1(12)	2.07(24) 2.66(33)	č ⁽¹⁾	$\tau_{\text{int}} _{c=0.22}$ $\tau_{\text{int}} _{c=0.50}$	5.8(14) 9.9(28)	3.54(70) 21.3(75)	2.54(4.85(
	$N_{\rm eff} _{c=0.22}$ $N_{\rm eff} _{c=0.50}$	109(24) 61(16)	112(24) 89(21)	550(63) 429(53)	Cs	$N_{\rm eff} _{c=0.22}$ $N_{\rm eff} _{c=0.50}$	87(20) 51(14)	130(26) 21.6(76)	448(! 235(3

Numerical effort

$\check{\mathcal{E}}_{s}^{(0)}$	ϵ	0.0125	0.025	0.05
<i>L</i> = 4	$\begin{array}{c} \tau_{\mathrm{int}} _{c=0.22} \\ \tau_{\mathrm{int}} _{c=0.50} \end{array}$	1.117(28) 1.567(48)	0.677(19) 0.837(25)	0.541(14) 0.567(14)
	$\begin{array}{c} N_{\rm eff} _{c=0.22} \\ N_{\rm eff} _{c=0.50} \end{array}$	17880(45) 12750(38)	24980 24980	24980 24980
l/a = 6	$\begin{array}{c} \tau_{\mathrm{int}} _{c=0.21} \\ \tau_{\mathrm{int}} _{c=0.50} \end{array}$	1.955(78) 3.27(17)	0.981(30) 1.651(64)	0.663(19) 0.842(26)
2/0 0	$N_{\rm eff} _{c=0.21} N_{\rm eff} _{c=0.50}$	6100(24) 3660(18)	23940 7250(28)	23960 23960
1/a = 8	$\tau_{\rm int} _{c=0.22}$ $\tau_{\rm int} _{c=0.50}$	3.22(29) 4.89(54)	1.66(12) 2.61(22)	0.919(51) 1.390(89)
2/0 0	$N_{\rm eff} _{c=0.22} N_{\rm eff} _{c=0.50}$	917(84) 603(66)	1810(12) 1133(97)	5960 2140(14)
L/a = 12	$\begin{array}{c} \tau_{\mathrm{int}} _{c=0.22} \\ \tau_{\mathrm{int}} _{c=0.50} \end{array}$	4.43(94) 8.2(22)	4.10(87) 5.1(12)	2.07(24) 2.66(33)
	$N_{ m eff} _{c=0.22} N_{ m eff} _{c=0.50}$	109(24) 61(16)	112(24) 89(21)	550(63) 429(53)

$\check{\mathcal{E}}_{s}^{(1)}$	ϵ	0.0125	0.025	0.05
L = 4	$\begin{array}{c} \tau_{\mathrm{int}} _{c=0.22} \\ \tau_{\mathrm{int}} _{c=0.50} \end{array}$	1.717(54) 4.00(17)	0.921(28) 2.030(83)	0.636(16) 1.144(37)
	$\begin{array}{l} N_{\rm eff} _{c=0.22} \\ N_{\rm eff} _{c=0.50} \end{array}$	11630(36) 5000(22)	24980 6150(25)	24980 10910(35)
l/a = 6	$\begin{array}{c} \tau_{\mathrm{int}} _{c=0.21} \\ \tau_{\mathrm{int}} _{c=0.50} \end{array}$	2.38(10) 7.96(58)	1.273(44) 4.20(23)	0.762(21) 2.32(10)
2/0 - 0	$\begin{array}{c} N_{\rm eff} _{c=0.21} \\ N_{\rm eff} _{c=0.50} \end{array}$	5020(22) 1500(11)	9400(33) 2850(16)	23960 5170(22)
L/a = 8	$\begin{array}{c} \tau_{\mathrm{int}} _{c=0.22} \\ \tau_{\mathrm{int}} _{c=0.50} \end{array}$	4.42(46) 14.1(23)	1.99(15) 6.00(69)	1.143(69) 2.99(26)
	$\begin{array}{c} N_{\rm eff} _{c=0.22} \\ N_{\rm eff} _{c=0.50} \end{array}$	667(70) 209(34)	1490(11) 493(57)	2610(16) 995(87)
L/a = 12	$\begin{array}{c} \tau_{\mathrm{int}} _{c=0.22} \\ \tau_{\mathrm{int}} _{c=0.50} \end{array}$	5.8(14) 9.9(28)	3.54(70) 21.3(75)	2.54(32) 4.85(78)
,	$\begin{array}{l} N_{\rm eff} _{c=0.22} \\ N_{\rm eff} _{c=0.50} \end{array}$	87(20) 51(14)	130(26) 21.6(76)	448(56) 235(38)

$$N_{
m eff} = rac{N_{
m meas}}{2\, au_{
m int}}$$

< ㅁ > < 쿱 > < 흔 > < 흔 > 흔 - 키익(아

Determination of
$$\langle t^2 \hat{E}(t, T/2) \rangle = \check{\mathcal{E}}^{(0)} g_0^2 + \check{\mathcal{E}}^{(1)} g_0^4 + \check{\mathcal{E}}^{(2)} g_0^6 + \dots$$

(P. Fritzsch, A. Ramos '13)

< ロ > < 唇 > < き > くき > き めへで

	с	0.1581	0.3162	0.4183	0.5000	0.5701
L = 4	$\delta \check{\mathcal{E}}_{s}^{(0)}$	0.0001(23)	0.0004(26)	0.0002(31)	0.0000(30)	0.0002(28)
	$\delta \check{\mathcal{E}}_{m}^{(0)}$	0.0001(23)	0.0006(25)	0.0006(30)	0.0005(28)	0.0005(26)
	с	0.1054	0.2981	0.4082	0.4944	0.5676
L/a = 6	$\delta \check{\mathcal{E}}_{s}^{(0)}$	0.0003(22)	0.0007(18)	0.0018(14)	0.0025(17)	0.0029(20)
	$\delta \check{\mathcal{E}}_{m}^{(0)}$	0.0002(19)	0.0010(24)	0.0012(22)	0.0014(22)	0.0015(23)
L/a = 8	с	0.1118	0.2958	0.4031	0.4873	0.5590
	$\delta \check{\mathcal{E}}_{s}^{(0)}$	0.00056(63)	0.0016(27)	0.0023(36)	0.0028(43)	0.0031(48)
	$\delta \check{\mathcal{E}}_{m}^{(0)}$	0.00003(59)	0.0032(23)	0.0051(45)	0.0057(57)	0.0057(64)
L/a = 12	с	0.0745	0.2687	0.3727	0.4534	0.5217
	$\delta \check{\mathcal{E}}_{s}^{(0)}$	0.00021(68)	0.0083(68)	0.011(11)	0.014(14)	0.015(16)
	$\delta \check{\mathcal{E}}_{m}^{(0)}$	0.00045(80)	0.0062(87)	0.007(14)	0.009(18)	0.011(21)

$$\delta \check{\mathcal{E}}_{s,m}^{(0)} = \frac{\check{\mathcal{E}}_{s,m}^{(0)}}{\hat{\mathcal{N}}_{s,m}} - 1$$

Autocorrelation time vs c

Autocorrelation time vs L

