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Content of the talk

Blocking in configuration space: it’s hard! (Ising 2 example)
Tensor Renormalization Group (TRG): blocking is simple and
exact!
TRG for spin models (O(N) and principal chiral models)
TRG for gauge models (Ising, U(1) and SU(2))
Numerical applications: beating the sign problem at complex β
and chemical potential for spin models
Conclusions

For details see: PRB 87 064422 (2013) and arXiv1307.6543. There
are two preprints in progress with numerical applications.
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Block Spining in Configuration Space: Step 1

Square blocks in A− B checkerboard; B blocks are fixed backgrounds.
We can block spin in the A blocks. Example:
Pr(φA = 4|φbackground

i ) = exp(β(4 +
∑8

i=1 φ
background
i ))

A BB

B

B
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Block Spining in Configuration Space: Step 2 etc.

The next step is to try to block spin in the B blocks. We can use step 1
and block spin in a given B block but there are 20 background spins.
This does not seem to stop and finding the effective energy function is
nontrivial.
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TRG blocking: it’s simple and exact!

For each link:

exp(βσ1σ2) = cosh(β)(1 +
√

tanh(β)σ1
√

tanh(β)σ2) =

cosh(β)
∑

n12=0,1

(
√

tanh(β)σ1
√

tanh(β)σ2)
n12 .

Regroup the four terms involving a given spin σi and sum over its two
values ±1. The results can be expressed in terms of a tensor: T (i)

xx ′yy ′
which can be visualized as a cross attached to the site i with the four
legs covering half of the four links attached to i . The horizontal indices
x , x ′ and vertical indices y , y ′ take the values 0 and 1 as the index n12.

T (i)
xx ′yy ′ = fx fx ′ fy fy ′δ

(
mod[x + x ′ + y + y ′,2]

)
,

where f0 = 1 and f1 =
√

tanh(β). The delta symbol is 1 if
x + x ′ + y + y ′ is zero modulo 2 and zero otherwise.
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TRG blocking (graphically)

Exact form of the partition function: Z = (cosh(β))2V Tr
∏

i T (i)
xx ′yy ′ .

Tr mean contractions (sums over 0 and 1) over the links.
Reproduces the closed paths of the HT expansion.
TRG blocking separates the degrees of freedom inside the block which
are integrated over, from those kept to communicate with the
neighboring blocks. Graphically :
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TRG Blocking (formulas)

Blocking defines a new rank-4 tensor T ′XX ′YY ′ where each index now
takes four values.

T ′X(x1,x2)X ′(x ′1,x
′
2)Y (y1,y2)Y ′(y ′1,y

′
2)
=∑

xU ,xD ,xR ,xL

Tx1xUy1yLTxUx ′1y2yR
TxDx ′2yRy ′2

Tx2xDyLy ′1
,

where X (x2, x2) is a notation for the product states e. g. ,
X (0,0) = 1, X (1,1) = 2, X (1,0) = 3, X (0,1) = 4. The partition
function can be written as

Z = Tr
∏
2i

T ′(2i)
XX ′YY ′ ,

where 2i denotes the sites of the coarser lattice with twice the lattice
spacing of the original lattice.

Yannick Meurice (U. of Iowa) Tensor Renormalization Group Lattice 2013, July 29, Mainz 7 / 32



Accurate exponents from approximate tensor
renormalizations (YM, Phys. Rev. B 87, 064422 2013)

For the Ising model on square and cubic lattices, truncation
method (HOSVD) sharply singles out a surprisingly small
subspace of dimension two.
In the two states limit, the transformation can be handled
analytically yielding a value 0.964 for the critical exponent ν much
closer to the exact value 1 than 1.338 obtained in Migdal-Kadanoff
approximations. Alternative blocking procedures that preserve the
isotropy can improve the accuracy to ν = 0.987 and 0.993
respectively.
Applications to other classical lattice models are possible,
including models with fermions. TRG could become a competitor
for the Monte Carlo method suitable to calculate accurately critical
exponents, take continuum limits and study near-conformal
systems in large volumes.
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O(2) model

Z =

∫ ∏
i

dθi

2π
e
β

∑
<ij>

cos(θi−θj )

.

eβ cos(θi−θj ) =
+∞∑

nij=−∞
einij (θi−θj )Inij (β) ,

where the In are the modified Bessel functions of the first kind. In two
dimensions, we obtain the factorizable expression:

T i
nix ,nix′ ,niy ,niy′

=
√

Inix (β)
√

Iniy (β)
√

Inix′ (β)
√

Iniy′ (β)

δnix+niy ,nix′+niy′ .

The partition function and the blocking of the tensor are similar to the
Ising model. The only difference is that the sums run over the integers.
As the In(β) decay rapidly for large n and fixed β (namely like 1/n!)
there is no convergence issue.
The generalization to higher dimensions is straightforward.

Yannick Meurice (U. of Iowa) Tensor Renormalization Group Lattice 2013, July 29, Mainz 9 / 32



O(3) model

H = −
∑

<ij> cos γij with
cos γij = cos θi cos θj + sin θi sin θj cos(φi − φj) .

eβ cos γij =
∞∑

l=0

Al(β)
l∑

m=−l

Y ∗lm(θj , φj)Ylm(θi , φi),

Al(β) = 4π
∞∑

n=l

In(β)

1∫
−1

Tn(x)Pl(x)dx .

Yl1m1(θ, φ)Yl3m3(θ, φ) =
lmax∑

L=lmin

G(m1,m3,l1,l3)
L Y m1+m3

L (θ, φ) .

T(l1,m1),(l2,m2),(l3,m3),(l4,m4) = δm1+m3,m2+m4∑
L

G(m1,m3,l1,l3)
L G∗L

(m2,m4,l2,l4)
√

Al1Al2Al3Al4 .
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TRG for SU(2) Principal Chiral Models

Z =
∏

n

∫
dU(n)

∏
ni

exp
{
β

2
Re[tr

[
U(n)U†(n + i)

]
]

}
.

T(r1,m1,n1)(r2,m2,n2)(r3,m3,n3)(r4,m4,n4) =

(Fr1(β)Fr2(β)Fr3(β)Fr4(β))
1
2

×
∑

r ′,m′,n′
d−1

r ′ (−1)m′−n′

Cr1 r2 r ′
m1 m2 m′C

r1 r2 r ′
n1 n2 n′C

r3 r4 r ′
m3 m4−m′C

r3 r4 r ′
n3 n4−n′ .
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TRG Formulation of 3D Z2 Gauge Theory

Z =
∑
{σ}

exp

(
β
∑

P

σ12σ23σ34σ41

)
,

For each plaquette the weight is∑
n=0,1

( 4
√

tanh(β)σ12
4
√

tanh(β)σ23
4
√

tanh(β)σ34
4
√

tanh(β)σ41)
n.

Regrouping the factors with a given σl and summing over ±1 we obtain
a tensor attached to this link

A(l)
n1n2n3n4

=
(

4
√

tanhβ
)n1+n2+n3+n4

×

δ (mod[n1 + n2 + n3 + n4,2]) .
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A and B tensors

The four links attached to a given plaquette p must carry the same
index 0 or 1. For this purpose we introduce a new tensor

B(p)
m1m2m3m4

= δ(m1,m2,m3,m4)

=

{
1, all ni are the same
0, otherwise.

The partition function can now be written as

Z = (2 coshβ)3V Tr
∏

l

A(l)
n1n2n3n4

∏
p

B(p)
m1m2m3m4

,
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A and B tensors graphically
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Asymmetric Formulation Graphically

A
A

A B

B

B

O
X

X'

Y

Y'

Z

Z'

Figure: A new basic cell in an original cube. The equivalent T6 tensor, its
center is (1/4, 3/4, 3/4) in the original cube. Each leg is a double index.
Left-Right A− B asymmetric in each direction.
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Assymetric formulation: the partition function

By using 3 A tensors and 3 B tensors, a basic cell can be constructed.
There are twelve external legs. We can recombine the indices
attached to the legs pointing in the same directions using product
states (labeled by capital letters). For instance X = x1 ⊗ x2 and
similarly with the other directions. Proceeding this way, we obtain a
new tensor T6XX ′YY ′ZZ ′ which can be treated as in the case of a 3D
spin model. However, in the positive (X ,Y ,Z ) and negative (X ′,Y ′,Z ′)
directions, the opposite legs are associated with different tensors. For
instance X is associated with A and X ′ with B.
The partition function can be rewritten as the tensor-network state of
the new T6 tensor at each cube c,

Z = (2 coshβ)3V Tr
∏

c

T6
(c)
XX ′YY ′ZZ ′ .
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Assymetric formulation: blocking

To blockspin, we can use anisotropic steps by contracting the lattice
alternatively in the x axis, y axis, and z axis directions. In each step,
the lattice size is reduced by a factor of 2 in the appropriate direction
and a new T ′6 tensor is generated as,

T ′6XX ′′Ỹ (Y1,Y2)Ỹ ′(Y ′1,Y
′
2)Z̃ (Z1,Z2)Z̃ ′(Z ′1,Z

′
2)

=
∑
X ′

T6XX ′Y1Y ′1Z1Z ′1
T6X ′X ′′Y2Y ′2Z2Z ′2

,

where Ỹ (Y1,Y2) is the notation for the product states Ỹ = Y1 ⊗ Y2 and
similarly with the other directions. The partition function can then be
rewritten as the trace of product of T ′6 tensors as before blocking.
It is also possible to find tensors associated with the partition function
in the temporal gauge. The A tensor on the temporal links disappear
while those on the space links have a space-time asymmetry. This will
be important for numerical applications.
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Symmetric Formulation: the B̃ tensor

The A and B tensors do not suffer from this asymmetry. However they
do not close under blocking. We can try to combine the B tensors of
two adjacent plaquettes in the same plane into a new one. This does
not work because the A tensor on the common link induces two new
legs orthogonal to the plane and pointing in opposite directions
(eliminated in Migdal-Kadanoff by bond-sliding). For an exact formula
we modify the B tensor to form a B̃ tensor with 6 indices with initial
value

B̃n1n2n3n4zz′ = Bn1n2n3n4δzz′ ,

B
�

A

A

A
A

n1

n2

n3

n4

z

z'

Figure: A and B′ tensor on each plaquette.

for a plaquette in the x − y plane and with similar expressions for the
two other planes.
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Symmetric Formulation: the C tensor

The new legs piercing the plaquettes can be traced by introducing a
new tensor Cxx ′yy ′zz′ at the center of the cubes with initial value

Cxx ′yy ′zz′ = δxx ′δyy ′δzz′ ,

We can now rewrite the partition function as

Z = K (2 coshβ)3V Tr
∏

l

A(l)
∏

p

B̃(p)
∏

c

C(c) ,

where the indices are implicit to keep the formula short. The Kronecker
delta in the initial values can be summed along open or closed lines
(depending on the boundary conditions) and give rise to a power of 2
that can be eliminated by adjusting the constant K . The other traces
are as in the assymetric expression of the partition function.
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Symmetric formulation: Blocking (graphically)

A blocking procedure can be constructed by sequentially combining
two cubes into one in each of the directions.

C
CB

�

B
�

B
�A

A

A

Figure: blocking procedure
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Symmetric formulation: blocking formulas

On the link of the new lattice formed by two cubes, two parallel A
tensors form the new A′ tensor with product states (capital letters).
Each tensor element is

A′X(x1,x2)X ′(x ′1,x
′
2)Y (y1,y2)Y ′(y ′1,y

′
2)

= Ax1x ′1y1y ′1
× Ax2x ′2y2y ′2

.

On the new face, two B̃ tensors and one A tensor form a new B̃′ tensor,

B̃′xx ′Y (y1,y2)Y ′(y ′1,y
′
2)Z (z1,z2,z3)Z ′(z′1,z

′
2,z
′
3)

=
∑
x3,x ′3

B̃xx3y1y ′1z1z′1
Ax3x ′3z3z′3

B̃x ′3x ′y2y ′2z2z′2
.

At the center, two C tensors and one B̃ tensor form a new C′ tensor,

C′xx ′Y (y1,y2,y3)Y ′(y ′1,y
′
2,y
′
3)Z (z1,z2,z3)Z ′(z′1,z

′
2,z
′
3)

=
∑
x2,x ′2

Cxx2y1y ′1z1z′1
B̃x2x ′2y2y ′2z2z′2

Cx ′2x ′y3y ′3z3z′3
.
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U(1) Gauge Models

Z =
∏
〈ij〉

∫ π

−π

dθij

2π
exp

(
β
∑

P

cos(θ12 + θ23 − θ43 − θ14)

)
,

where the product is running through all the links of the lattice and the
sum is over all the plaquettes. Using the Fourier expansion with the
Bessel functions and collecting the factors for each link, we obtain the
A tensor

An1...n2(D−1) =

2(D−1)∏
i=1

4
√

Ini (β)δ

2(D−1)∑
i=1

(−1)i+1ni

 ,

where the Ins are the modified Bessel functions. For any D, we can
use a B tensor that ensures that the four indices attached to a
plaquette are identical just like for the Z2 case. The partition function
can be written as

Z = Tr
∏

l

A(l)
n1...n2(D−1)

∏
p

B(p)
m1m2m3m4

.
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D = 4

The basic cell of tensors in D = 4 has A tensors with six legs and six B
tensors in one basic cell of the hyper-cube. There are 3 legs pointing
in each of the directions. Following the asymmetric procedure, we can
combine each of these three legs into a single index, build a rank 8
tensor. It seems possible to follow the symmetric procedure.

A

B

Figure: 4-D U(1) tensor in a hypercube red (online) dots: A tensors. blue
(online) dots: B tensors.
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TRG Formulation of 3D SU(2) Gauge

Z =
∏
ni

∫
dU(ni)

∏
nij

exp
{
β

4
Re[tr [U(nij)]]

}
,

We can re-write the action as a character expansion

e−βSp =
∑

r

Fr (β)χ
r (U(nij)).

Using
χr (U1U2U3U4) = Dr

ij(U1)Dr
jk (U2)Dr

kl(U3)Dr
li(U4),

we can perform the product over plaquettes of the lattice, and gather
together the four D-functions which all share the same link variable.
Explicit expressions can be obtained from the orthogonality of the
Wigner D-functions. This situation is similar to the 2D Principal Chiral
model.
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3D SU(2) Gauge: A and B tensors

Initial values of the A and B tensors:

A(r1,m1,n1)(r2,m2,n2)(r3,m3,n3)(r4,m4,n4) =

(Fr1(β)Fr2(β)Fr3(β)Fr4(β))
1
4

×
∑

r ′,m′,n′
d−1

r ′ (−1)m′−n′

Cr1 r2 r ′
m1 m2 m′C

r1 r2 r ′
n1 n2 n′C

r3 r4 r ′
m3 m4−m′C

r3 r4 r ′
n3 n4−n′ .

B̃(r ,i,i ′)(r ′,j,j ′)(r ′′,k ,k ′)(r ′′′,l,l ′)

= Brr ′r ′′r ′′′δi,jδj ′,kδk ′,lδl ′,i ′ .

We can now proceed as in the 3D Abelian case to write the partition
function and perform blockings using A and B tensors. The only
difference is that the single indices of the Abelian formulas need to be
replaced by three indices.
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Comparison with exact and MC results (in progress)

In practice, the TRG blocking needs (optimal) truncations (see PRB 87
064422 and refs. therein).

Successful results have been obtained by Haiyuan Zou, Ji-Feng Yu
and Alan Denbleyker for

2D Ising at complex β (sign problem) and finite volume compared
to exact Onsager-Kaufman; except near Fisher’s zeros, TRG can
reach much larger values of Imβ than MC
2D O(2) at finite volume: Fisher’s zero (compared with MC)
Critical properties of the 2D O(2) at large volume (compared with
MC)
2D O(2) with chemical potential (sign problem resolved)
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Comparison of TRG and exact results for 2D Ising

0.005 0.010 0.015 0.020

!1.0

!0.5

0.5

1.0

Figure: The real part of the partition function for β = 0.3+ ix vs. x; red: result
from HOTRG with 20 states; blue: exact solution (Onsager-Kaufmann).
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Comparison of TRG and exact results for 2D Ising:
Fisher’s zeros
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Figure: Zeros of the real and imaginary parts of the partition function from
HOTRG with 40 states for 8x8 Ising. Blue: ReZ=0. Red: ImZ=0. Squares:
TRG. Thick line: exact solution. Gray line: MC.
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Fisher’s zeros of the 2D O(2) model at small volume
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Figure: Fisher’s zeros of XY model with L = 4, 8, 16, 32, 64 and number of
states 16 (green), 20 (blue), 30 (red).
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Fisher’s zeros of the 2D O(2) model: TRG and MC

Figure: Fisher’s zeros of XY model with L = 4, 8, 16, 32, 64 for 30 states
compared to MC
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Other possible applications

Modulated phases in clock and O(2) models with chemical
potential.
See: The sign problem and Abelian lattice duality, Michael Ogilvie
and Peter Meisinger, Mon, 16:30, Seminar Room B
Comparison between classical and quantum tensor formulations
of the 2D Schwinger model.
See: Matrix Product States for Lattice Field Theories, Mari
Carmen Banuls, Krzysztof Cichy, Karl Jansen, and Ignacio Cirac
Tue, 17:00, Seminar Room E
Proof of confinement or the absence thereof. Refinement of the
Migdal-Kadanoff bounds (this could help distinguishing between
U(1) and SU(2) in Tomboulis’s approach)
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Conclusions

The TRG method allows us to achieve the Wilsonian program
(block spinning) in an exact way
It applies to most classical lattice models
Successful numerical calculations for models with sign problems
Many new applications possible
Thanks!
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