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Why is there a need for a renormalized
Energy-momentum-tensor (EMT) on the lattice?

In the continuum we have Poincaré invariance
=⇒ ∂µT

µν = 0 for on-shell correlation functions.

Due to Ward Identities (WI) one can show that no
renormalization constant is needed.

BUT...

On the lattice we have to discretize the EMT operator and
in general =⇒ ∂̂µT̂

µν = 0 +O(a2)

Now ZT = ZT (g 2
0 ) 6= 1 and we want a well defined

continuum limit of the EMT components so that on-shell
correlation functions satisfy continuum WI’s.

of course...

limg2
0→0 ZT (g2

0 ) = 1
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Setup & Definitions: Tµν (SU(3) YM-theory)

Tµν = θµν +
1

4
δµνθ

θµν =
1

4
δµνF

a
ρσF

a
ρσ − F a

µαF
a
να

Continuum...

Fµν = ∂µAν−∂νAµ+ ig [Aµ,Aν ]

No additional
renormalization for Tµν
but the trace anomaly.

Lattice...

F̂µν = −i
8a2

(Qµν −Qνµ) (clover)

When discretized, θµν
splits into irreducible
representations of H(4).

The momentum density T̂0k belongs to a six-dimensional
representation of H(4) together with off-diagonal elements and

since no other gauge invariant operators with equal or less
dimension exist, it renormalizes multiplicatively!

M. Goeckeler et. al., Phys. Rev. D54 ’96
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GOAL:
Non-perturbative calculation of ZT

(T̂ clov
µν )R = ZT (T̂

clov
µν )0 (µ 6= ν)

STRATEGY:
Shifted boundary conditions...

“The matching will occur by calculating the entropy of the
system in a renormalized and unrenormalized way ... ”



Shifted boundary conditions
H. B. Meyer and L. Giusti, JHEP 1301 (2013) 140 [arXiv:1211.6669]
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Consequences of f (L0, ξ) = f (L0

√
1 + ξ2, 0)

L. Giusti, Wed 31th, 11:40, Seminar Room B

Apart from the usual WI’s that relate correlation functions
of T̂0k and T̂00 ...

=⇒ there are non-trivial WI’s connecting both
systems (shifted and not shifted).

There is a way of extracting termodynamic potentials by
measuring the response of the system to the shift:

s = −L0(1 + ξ2)3/2

ξk
ZT

〈
T̂0k

〉
ξ 6=0

(1)

H. B. Meyer and L. Giusti, JHEP 1301 (2013) 140

The shift parameter ξ can also be used to vary the
temperature in small steps without altering the UV
behavior of the theory (T = 1/NTa).

=⇒ Of special importance when simulations are done near
a phase transition.
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Consistency checks (free theory) ...

analytic calculations ...〈
T̂ clov
0k

〉free,lat
ξ

calculated in PT:

=⇒ (s/T 3)free,lat via Eq. (1).

=⇒ (s/T 3)free,lat

sSB/T 3 = 1+c1(a/L0)2

where,

sSB/T
3 = 4π2(N2

c − 1)/45

H. B. Meyer and L. Giusti, JHEP 1301 ’13 140

simulation ...

Difficult to simulate the free theory:

1 critical slowdown

2 finite size effects ∼ e−g
2
0 L/β

We chose NT = 2:

g2
0 L

0.429 32

0.3 48

0.24 60

0.2 72

ξ = (1, 0, 0)

ξ = (1/2, 0, 0)

Extrapolating g 2
0 → 0 ...
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Simulating the free lattice theory ...

L = 72

L = 60

L = 48

L = 32

ξ = (1, 0, 0)

g20

sβ3

sSBβ3

0.450.40.350.30.250.20.150.10.050

1.02

1

0.98

0.96

0.94

0.92

0.9

0.88



Extracting ZT (I) ...

First, we need a renormalized quantity related to
〈
T̂0k

〉
ξ

to compare our data with ...

Generating function associated to the momentum distribution

Definition:

K (L0, ξ) = − log
Z (L0, ξ)

Z (L0)
= − log

Tr{e−L0(Ĥ−iξP̂)}
Tr{e−L0Ĥ}

∂K (L0, ξ)

∂ξ

∣∣∣∣
ξ=ξ′

= −L0ZT

〈∫
d3xT̂0k(x)

〉
ξ′

“Since it is a ratio of partition functions, it has a finite and
universal continuum limit. All derived quantities are

renormalized as well!”



Extracting ZT (II) ...

How to systematically compute ratios of partition
functions was first investigated by M. Della Morte and L.
Giusti, Comput. Phys. Commun. 180 (2009) 819

L. Giusti and H. B. Meyer, PRL 106 (2011) 131601
computed K (L0, ξ) for several values of the inverse
coupling between [5 .9 , 7 .584 ].

By a limiting procedure they extracted the entropy as the
second cumulant of K (L0, ξ):

( s

T 3

)
R

=
∂2

∂ξ21

K (L0, ξ)

T 3L3

∣∣∣∣
ξ=0

= lim
a→0

2K (L0, ξ)

|ξ|2T 3L3

Surprisingly mild cutoff effects!



Extracting ZT (III) ...

Measuring
〈
T̂ clov

0k

〉
ξ

and taking the first derivative with respect

to ξ1 one gets an unrenormalized prediction for (s/T 3)0

( s

T 3

)
0

=
∂

∂ξ1

〈
T̂ clov

0k

〉
ξ

T 4

∣∣∣∣∣∣∣
ξ=0

= lim
ξ1→0


〈
T̂ clov

0k

〉
ξ

T 4ξ1
−�

�
��
�* 0〈

T̂ clov
0k

〉
ξ=0

T 4ξ1



Z clov
T =

(
s
T 3

)
R(

s
T 3

)
0
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Results (I) ...

Lat 6/g2
0 L0/a L/a

(
s
T 3

)
Giusti,Meyer

(
s
T 3

)
0

Z clov
T

A2 6.024 5 16 4.98(4) 3.27(3) 1.52(2)

A3 6.137 6 18 4.88(6) 3.24(4) 1.50(3)

A4 6.337 8 24 5.12(19) 3.28(6) 1.56(6)

A5 6.507 10 30 4.9(3) 3.32(9) 1.47(10)

B2 6.747 5 16 6.53(6) 4.53(2) 1.44(2)

B3 6.883 6 18 6.40(6) 4.53(2) 1.41(2)

B4 7.135 8 24 6.42(20) 4.54(2) 1.41(4)

B5 7.325 10 30 6.1(3) 4.55(4) 1.33(7)

C2 7.426 5 20 7.13(8) 5.11(3) 1.39(2)

C3 7.584 6 24 6.94(12) 5.07(3) 1.36(3)



Results (II) ...

g20

Zclov
T

10.80.60.40.20

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9

T = 9.1TC

T = 4.1TC

T = 1.5TC

1 + 0.27g20 (1-loop approx.)
Fit

g20

Zclov
T

10.80.60.40.20

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9

One loop approximation taken from S. Caracciolo, et al., Physics Letter B 260 (1991) 3



Conclusions and Outlook ...

The fit function is given by

Z clov
T =

1 + 0.1368g 2
0 + 0.1858g 4

0

1− 0.1332g 2
0

the error is ∼ 0.008 when g 2
0 ∈ [0.8, 1.0]

Possible improvements ...

1 Try to match better the one loop approximation expression from S.
Caracciolo, et al. =⇒ smaller values of g2

0 .

2 Include fermions (full QCD, other gauge groups SU(N), ...)

3 Calculate the diagonal components renormalization constant zT via

ZT

〈
T̂ clov
0k

〉
ξ

=
ξk

1− ξ2k
zT
〈
T̂ clov
00 − T̂ clov

kk

〉
ξ
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