Hierarchically Deflated Conjugate Gradient

Peter Boyle, University of Edinburgh

July 29, 2013

Eigenvector Deflation

Krylov solvers convergence controlled by the condition number

$$\kappa \sim rac{\lambda_{max}}{\lambda_{min}}$$

- Lattice chiral fermions possess an exact index theorem
- Index theorem $\Rightarrow \exists$ near zero modes separated from zero only by quark mass
- Recent algorithmic progress eliminates low mode subspace from Krylov inversion

EigCG:

- Determine N_{vec} ~ O(V) eigenvectors φ_i up to some physical λ
- $48^3 \Rightarrow 600$ vectors, $64^3 \Rightarrow 1500$ vectors
- Significant setup cost & storage cost $\propto V^2$
- Eliminates N_{vec} dimensional subspace $S = sp{\phi_i}$ from problem

$$M = \begin{pmatrix} M_{\bar{s}\bar{s}} & \epsilon \\ \epsilon^{\dagger} & M_{ss} \end{pmatrix} ; \qquad M_{ss}^{-1} = \frac{1}{\lambda_i} |i\rangle\langle i|$$

Where $\epsilon = M_{\tilde{s}s}$ is proportional to the error in the eigenvectors Guess $\phi = \text{diag}\{0\} \oplus \text{diag}\{\frac{1}{\lambda_i}\}\eta$

Why can we do better

Luscher's observation: local coherence of low modes

low virtuality solutions of gauge covariant Dirac equation locally similar

Consider N well separated instantons

- N-zero modes look like admixtures of single instanton eigenmodes
- Divide one mode into chunks centred on each each instanton
- All N-zero modes described by the span of these chunks

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Luscher's inexact deflation

Avoid critical slowing down in Krylov solution of

 $M\psi = \eta$

- Accelerate sparse matrix inversion by treating a vector subspace $S = \operatorname{span} \{ \phi_k \}$ exactly
- If the lowest lying eigenmodes are well contained in *S* the "rest" of the problem avoids critical slowing down

Setup:

- Must generate subspace vectors ϕ_k that are "rich" in low modes
- Subdividing these vectors into blocks b

$$\phi_k^b(x) = \left\{ egin{array}{ccc} \phi_k(x) & ; & x \in b \ 0 & ; & x
otin b \end{array}
ight.$$

yields a much larger subspace

 $48^3 \times 96$ lattice with 4^4 blocks $\Rightarrow 12^3 \times 24$ coarse grid $\Rightarrow O(10^4)$ bigger deflation space.

Similar idea previously used in αSA adaptive multigrid (Brezina et al 2004)

- covariant derivative ↔ algebraically smooth.
- blocks \leftrightarrow aggregates.

 $\alpha SA \longrightarrow$ US multigrid collaboration & Wuppertal Attempt using $D^{\dagger}D$ for DWF arXiv:1205.2933 (Cohen, Brower, Clark, Osborn)

Inexact deflation framework

Introduce subspace projectors

$$P_{S} = \sum_{k,b} |\phi_{k}^{b}\rangle \langle \phi_{k}^{b}| \qquad ; \qquad P_{\bar{S}} = 1 - P_{S}$$
(1)

Compute M_{ss} as

$$M = \left(\begin{array}{cc} M_{\bar{S}\bar{S}} & M_{S\bar{S}} \\ M_{\bar{S}S} & M_{SS} \end{array}\right) = \left(\begin{array}{cc} P_{\bar{S}}MP_{\bar{S}} & P_{S}MP_{\bar{S}} \\ P_{\bar{S}}MP_{S} & P_{S}MP_{S} \end{array}\right)$$

 Can represent matrix M exactly on this subspace by computing its matrix elements, known as the little Dirac operator ¹

$$A^{ab}_{jk} = \langle \phi^a_j | M | \phi^b_k \rangle$$

$$(M_{SS}) = A_{ij}^{ab} |\phi_i^a\rangle \langle \phi_j^b|$$

and the subspace inverse can be solved by Krylov methods and is:

$$Q = \begin{pmatrix} 0 & 0 \\ 0 & M_{SS}^{-1} \end{pmatrix}$$
$$M_{SS}^{-1} = (A^{-1})_{ij}^{ab} |\phi_i^a\rangle \langle \phi_j^b |$$

A inherits a sparse structure from M - well separated blocks do not connect through M

¹Coarse grid matrix in MG

Subspace Schur decomposition

We can Schur decompose any matrix

$$\begin{split} \mathcal{M} &= \mathcal{U} \mathcal{D} \mathcal{L} = \left[\begin{array}{cc} \mathcal{M}_{\tilde{s}\tilde{s}} & \mathcal{M}_{\tilde{s}s} \\ \mathcal{M}_{s\tilde{s}} & \mathcal{M}_{ss} \end{array} \right] \\ &= \left[\begin{array}{cc} 1 & \mathcal{M}_{\tilde{s}s} \mathcal{M}_{ss}^{-1} \\ 0 & 1 \end{array} \right] \left[\begin{array}{cc} S & 0 \\ 0 & \mathcal{M}_{ss} \end{array} \right] \left[\begin{array}{cc} 1 & 0 \\ \mathcal{M}_{s\tilde{s}}^{-1} \mathcal{M}_{s\tilde{s}} & 1 \end{array} \right] \end{split}$$

Note that

$$P_L M = \left[\begin{array}{cc} S & 0 \\ 0 & 0 \end{array} \right]$$

yields the Schur complement $S = M_{\bar{s}\bar{s}} - M_{\bar{s}s}M_{s\bar{s}}^{-1}M_{s\bar{s}}$ L and U related to Luscher's projectors P_L and P_R^2

$$P_{L} = P_{\bar{S}}U^{-1} = \begin{pmatrix} 1 & -M_{\bar{S}S}M_{SS}^{-1} \\ 0 & 0 \end{pmatrix}$$
$$P_{R} = L^{-1}P_{\bar{S}} = \begin{pmatrix} 1 & 0 \\ -M_{SS}^{-1}M_{S\bar{S}} & 0 \end{pmatrix}$$

Also, $QM = 1 - P_R$

²Galerkin oblique projectors in MG

Luscher's algorithm

Multiply $M\psi = \eta$ by $1 - P_L$ and P_L yielding $(1 - P_R)\psi$ and $P_R\psi$:

$$\begin{split} (1-P_R)\psi &= M_{ss}^{-1}\eta_s\\ (P_LM)\chi &= P_L\eta\\ \psi &= P_R\chi + M_{ss}^{-1}\eta_s \end{split}$$

Each step of an outer Krylov solver involves an inner Krylov solution of the little Dirac op

- This enters the matrix $P_L M$ being inverted and errors propagate into solution
- · Luscher tightens the precision during convergence; uses history forgetting flexible GCR
- Suppress little Dirac operator with Schwarz alternating procedure (SAP) preconditioner

$$(P_L M)M_{SAP}\phi = P_L\eta$$
 ; $\psi = M_{SAP}\phi$

- Non-hermitian system possible as evalues of D_W live in right half of complex plane:
- Little Dirac operator for D_W is nearest neighbour
 - · Red black preconditioning of Little dirac op possible
 - Schwarz alternating procedure possible as D_W does not connect red to red.

Generalisation to 5d Chiral fermions

Krylov solution of Hermitian system necessary (CG-NR, MCR-NR) Aim to speed up the red-black preconditioned system as this starts better conditioned

$$\mathcal{H} = \left(M_{oo} - M_{oe}M_{ee}^{-1}M_{eo}
ight)^{\dagger}\left(M_{oo} - M_{oe}M_{ee}^{-1}M_{eo}
ight) = M_{\mathrm{prec}}^{\dagger}M_{\mathrm{prec}}$$

Matrix being deflated is is next-to-next-to-next-to-nearest-neighbour!

Tasks!

- Must find further suppression of little Dirac operator overhead as LDop more costly
- Must find a replacement for the Schwarz preconditioner
- Must find appropriate solver: (P_LM)M_{SAP} nonhermitian matrix so unsuitable for CG

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Must ensure system is tolerant to ill convergence of inner Krylov solver(s).

Little Dirac Operator

4 hop operator is painful as it connects 3280 neighbours!

- Limit the stencil of the Little Dirac operator by requiring block $\geq 4^4$
- Mobius fermions M_{ee}^{-1} is non-local in s-direction \Rightarrow blocks stretch full s-direction
- · Sparse in 4d with next-to-next-to-next-to-nearest coupling
- Matrix still connects to 80 neighbours

$$\begin{array}{c} (\pm \hat{x}), \ (\pm \hat{y}), \ (\pm \hat{z}), \ (\pm \hat{t})\\ (\pm \hat{x} \pm \hat{y}), \ (\pm \hat{x} \pm \hat{z}), \ (\pm \hat{x} \pm \hat{t}), \ (\pm \hat{y} \pm \hat{z}), \ (\pm \hat{y} \pm \hat{t}), \ (\pm \hat{z} \pm \hat{t})\\ (\pm \hat{x} \pm \hat{y} \pm \hat{z}), \ (\pm \hat{x} \pm \hat{y} \pm \hat{t}), \ (\pm \hat{x} \pm \hat{z} \pm \hat{t}), \ (\pm \hat{y} \pm \hat{z} \pm \hat{t})\\ (\pm \hat{x} \pm \hat{y} \pm \hat{z}), \ (\pm \hat{x} \pm \hat{y} \pm \hat{z}), \ (\pm \hat{x} \pm \hat{y} \pm \hat{z}), \ (\pm \hat{y} \pm \hat{z} \pm \hat{t})\end{array}$$

- · Underlying cost at least ten times more than non-Hermitian system
- Reducing to 4d has saved Ls factor but may require more vectors to describe 5th dimension

(日) (日) (日) (日) (日) (日) (日) (日)

Little Dirac Operator Implementation

- 10×10 matrix-vector complex multiply reasonably high cache reuse
 - · Using IBM xlc vector intrinsics gives adequate performance
 - Single precision accelerated gives around 50 Gflop/s per node in L2 cache
 - (re)Discovered bug in L2 cache around 4 months after Argonne
- 80 small messages of order 1-5 KB
 - Programme BG/Q DMA engines directly to eliminate MPI overhead
 - Asynchronous send overhead under 10 microseconds with precomputed DMA descriptors.

• 50x faster than MPI calls.

Infra-red shift preconditioner

Since we are deflating the low modes, seek approximate inverse preconditioner for Hermitian system that is accurate for high modes.

Naive left-right preconditioner:

$$egin{aligned} L^{\dagger}(P_L\mathcal{H})L\phi &= L^{\dagger}P_L\eta\ L &\sim (\mathcal{H})^{-rac{1}{2}} \end{aligned}$$

• Better to use preconditioned CG (p 278 Saad) with Hermitian preconditioner M_P

$$M_P = L^{\dagger}L \sim (\mathcal{H})^{-1}$$

- Use fixed number of shifted CG iterations as preconditioner (IR shifted preconditioner)
 - · Krylov solver seeks optimal polynomial under some norm

$$M_{IRS} = rac{1}{\mathcal{H} + \lambda}$$

- λ is an gauge covariant infra-red regulator that shifts the lowest modes
 - Plays similar role to the domain size in SAP
- · Keeps the Krylov solver working hard on the high mode region
 - Does not have locality benefit of SAP³

 $^{^{3}}$ Comms in BG/Q tolerate this, but Additive Schwarz is worth investigating for future machines (suggested by Mike Clark) $\langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle + \langle \Xi \rangle - \langle \Xi \rangle = 0$

Robustness

Two inner Krylov solvers

- Little Dirac operator inversion $Q \equiv M_{SS}^{-1}$
- IR shifted preconditioner inversion $M_{IRS} = rac{1}{\mathcal{H}+\lambda}$

Curious robustness effects: during solution to $10^{-8}\ \text{on a }16^3\ \text{lattice}$

M_{ss}^{-1} residual	M _{IRS} residual	Iteration count
10^{-11}	10^{-8}	36
10 ⁻⁸	10^{-8}	Non converge ⁴
10^{-11}	10^{-8}	36
10^{-11}	10^{-4}	36
10^{-11}	10^{-2}	36

Although flexible CG (Notay 1999) exists better to understand why the CG is tolerant to variability in M but not Q

Robustness

Consider preconditioned CG with $A = P_L \mathcal{H} = \begin{pmatrix} 1 & -M_{\bar{S}S}M_{SS}^{-1} \\ 0 & 0 \end{pmatrix} \mathcal{H}$

- 1. $r_0 = b Ax_0$
- 2. $z_0 = M_{IRS} r_0$; $p_0 = z_0$
- 3. for iteration k
- 4. $\alpha_k = (r_k, z_k)/(p_k, Ap_k)$
- 5. $x_{k+1} = x_k + \alpha_k p_k$
- $6. r_{k+1} = r_k \alpha_k A p_k$
- $7. \ z_{k+1} = M_{IRS}r_{k+1}$
- 8. $\beta_{\mathbf{k}} = (\mathbf{r}_{\mathbf{k}+1}, \mathbf{z}_{\mathbf{k}+1})/(\mathbf{r}_{\mathbf{k}}, \mathbf{z}_{\mathbf{k}})$
- 9. $\mathbf{p}_{\mathbf{k}+1} = \mathbf{z}_{\mathbf{k}+1} + \beta_{\mathbf{k}}\mathbf{p}_{\mathbf{k}}$
- 10. end for
 - Noise in the preconditioner M_{IRS} only enters the search direction α_k is based on matrix elements of $P_L \mathcal{H}$.
 - Better to use the Little Dirac operator inverse as a preconditioner ...and not separate the solution into subspace and complement ...already discussed as advantage of MG in Boston papers

Combining preconditioners

• Have little Dirac operator Q and M_{IRS} representing approximate inverse

- Q on subspace containing low mode
- *M_{IRS}* on high mode space
- splitting is necessarily inexact
- · Options for combining these as a preconditioner
 - Additive

$$M_{IRS} + Q$$

• Consider alternating error reduction steps

$$\begin{array}{rcl} x_{i+1} & = & x_i + M_{IRS}[b - \mathcal{H}x_i] \\ x_{i+2} & = & x_{i+1} + Q[b - \mathcal{H}x_{i+1}] \\ & = & x_i + M_{IRS}[b - \mathcal{H}x_i] + Q[b - \mathcal{H}[x_i] + M_{IRS}[b - \mathcal{H}x_i]]] \\ & = & x_i + [(1 - Q\mathcal{H})M_{IRS} + Q](b - \mathcal{H}x_i) \\ & = & x_i + [P_R M_{IRS} + Q](b - \mathcal{H}x_i) \end{array}$$

Infer family of preconditioner

Sequence	Preconditioner	Name
additive	$M_{IRS} + Q$	AD
M _{IRS} , Q	$P_R M_{IRS} + Q$	A-DEF2
Q, M _{IRS}	$M_{IRS}P_L+Q$	A-DEF1
Q, M _{IRS} , Q	$P_R M_{IRS} P_L + Q$	Balancing Neumann Neumann (BNN)
Q, M _{IRS} , Q	$M_{IRS}P_L + P_RM_{IRS} + Q - M_{IRS}P_L\mathcal{H}M_{IRS}$	MG Hermitian $V(1,1)$ cycle

Generalised framework for inexact deflation solvers

Extend framework of Tang, Nabben, Vuik, Erlangga (2009) to three levels

Take
$$Q = \begin{pmatrix} 0 & 0 \\ 0 & M_{SS}^{-1} \end{pmatrix}$$
 and $M_{IRS} = (\mathcal{H} + \lambda)^{-1}$

Method	$V_{\rm start}$	M1	M_2	M ₃	$V_{\rm end}$
PREC	x	MIRS	1	1	x_{k+1}
AD	x	$M_{IRS} + Q$	1	1	x_{k+1}
DEF1	x	MIRS	1	PI	$Qb + P_R x_{k+1}$
DEF2	$Qb + P_R x$	MIRS	P_R	1	x_{k+1}
A-DEF1	x	$M_{IRS}P_I + Q$	P_R	1	x_{k+1}
A-DEF2	$Qb + P_R \times$	$P_R M_{IRS} + Q$	1	1	×k+1
BNN	x	$P_R M_{IRS} P_I + Q$	1	1	x_{k+1}

- DEF1/DEF2/ADEF1/ADEF2/BNN are equivalent
 - identical iterates with V_{start} up to Q, M_{IRS} error
 - · Luscher's algorithm corresponds to DEF1
- Move little Dirac operator into the preconditioner with formally identical convergence to inexact deflation!
- A-DEF2 is most tolerant of preconditioner variability

Algorithm		
1.	× arbitrary	
2.	$x_0 = V_{\text{start}}$	
3.	$r_0 = b - \mathcal{H}x_0$	
4.	$y_0 = M_1 r_0$; $p_0 = M_2 y_0$	
5.	for iteration k	
6.	$w_k = M_3 \mathcal{H} p_k$	
7.	$\alpha_k = (r_k, y_k)/(p_k, w_k)$	
8.	$x_{k+1} = x_k + \alpha_k p_k$	
9.	$r_{k+1} = r_k - \alpha_k w_k$	
10.	$y_k = M_1 r_k$	
11.		
	$\beta_{\mathbf{k}} = (\mathbf{r}_{\mathbf{k}+1}, \mathbf{y}_{\mathbf{k}+1})/(\mathbf{r}_{\mathbf{k}}, \mathbf{y}_{\mathbf{k}})$	
12.	$\mathbf{p_{k+1}} = \mathbf{M_2y_{k+1}} + \boldsymbol{\beta_kp_k}$	
13.	end for	
14.	$x = V_{end}$	

Remain in deflated Krylov picture but make it Heirarchical by deflating the deflation matrix Q

Why does CG work here?

• Hermiticity of M_1 clear for BNN but not A-DEF1/2 Theorem: for $V_{\text{start}} = Qb + P_{RX}$ A-DEF2 is identical to BNN.

• We have from
$$QH = (1 - P_R)$$

 $Qr_0 = Q[HV_{start} - b] = (1 - P_R)[Q_b + P_Rx] - Qb = P_RQ_b = 0$
 $QHp_0 = (1 - P_R)[P_RMP_L + Q]r_0 = 0$

• get induction steps:

$$Qr_{j+1} = Qr_j - \alpha_j Q\mathcal{H} p_j = 0$$
$$Q\mathcal{H} p_{j+1} = (1 - P_R)[P_R M P_L + Q]r_j + \beta_j Q\mathcal{H} p_j = 0$$

• Can also show $P_L r_0 = 0$ and $P_L \mathcal{H} p_0 = \mathcal{H} p_0$ so that

$$P_L \mathcal{H} p_{j+1} = \mathcal{H} P_R [P_R M P_L + Q] r_j + \beta_j p_j = \mathcal{H} p_{j+1}$$

and

$$P_L r_{j+1} = P_L r_j - \alpha_j P_L \mathcal{H} p_j = r_j - \alpha_j \mathcal{H} p_j = r_{j+1}$$

BNN then retains $P_L r_j = r_j$ in exact arithmetic \Rightarrow BNN iteration ($P_R M P_L r_j$) and A-DEF2 iteration ($P_R M r_j$) equivalent up to convergence error

DEF1(Luscher), DEF2, A-DEF1, A-DEF2, BNN are ALL equivalent up to convergence

BUT they differ hugely in sensitivity to convergence error in Q

Hermiticity and improved subspace generation

Hermitian system gains the properties

$$P_L^{\dagger} = P_R \qquad (P_L M)^{\dagger} = P_L M$$

• Since we use $\mathcal{H} = M_{\rm prec}^{\dagger} M_{\rm prec}$ we have a Hermitian Positive (semi) Definite matrix. Generate subspace with rational multi-shift solver applied to Gaussian noise

- · Classic low pass filtering problem use rational filter
 - Gain $1/x^4$ suppression in single pass without inverse iteration
 - $\epsilon \sim 10^{-3}$ adds IR safety to the inversion ${\it O}(1000)$ iterations per subspace vector
 - NB Also possible for $\gamma_5 D_W$
 - Subspace support only on walls possible. Potential to regain factor of L_s?

Subspace tricks

- Improved subspace generation
 - 1. Solve rational in single precision to loose tolerance (10^{-4}) and with reduced L_s
 - 2. Compute HDCG operator
 - 3. Refine subspace: loose (10^{-3}) shifted HDCG inverse fills into bulk
 - 4. Recompute HDCG operator
 - 2-4× reduction in subspace generation over double precision rational
 - Not all subspace vectors need be extensive in 5th dim
 - Removes L_s factor from the expensive low mode subspace
 - · Gives same CG count as high precision rational filter
- Subspace reuse: recompute little Dop matrix elements with no change to subspace
 - Twisted boundary conditions
 - · Moderate change in mass not obvious for 5d chiral fermions but works!

Algorithm	Volume	mass	Twist	Solve time
CGNE	32 ⁴	0.01	$\frac{\pi}{L}(0,0,0)$	30s
HDCG	32 ⁴	0.01	$\frac{\pi}{L}(0,0,0)$	6.9s
HDCG	32 ⁴	0.01	$\frac{\pi}{1}(0.2, 0, 0)$	6.9s
HDCG	32 ⁴	0.01	$\frac{\pi}{1}(0.5, 0.5, 0.0)$	9.2s
HDCG	32 ⁴	0.01	$\frac{\bar{\pi}}{l}(0.5, 0.5, 0.5)$	9.8s
HDCG	32 ⁴	0.1	$\frac{\pi}{l}(0,0,0)$	3.6s
HDCG	32 ⁴	0.01	$\frac{\bar{\pi}}{l}(0,0,0)$	6.9s
HDCG	32 ⁴	0.005	$\frac{\bar{\pi}}{L}(0,0,0)$	7.4s
HDCG	32 ⁴	0.001	$\frac{\pi}{L}(0,0,0)$	7.8s

Hierarchical deflation

Deflate the deflation matrix !

From 48³ at physical

- Block these vectors φ^b_k (e.g. 4⁴ × L_s) and compute little Dirac operator Need only apply N_{stencil} = 80 matrix multiplies per vector to compute little Dirac operator with a Fourier trick. Single precision suffices Can detect stencil from matrix application and generate optimal code for 1,2,4 hop operators
- · Compute second level of deflation heirarchy using inverse iteration on Gaussian noise.
- · Diagonalise this basis to make multiplication cheap
- Massively reduce convergence precision:
 - Use A-DEF2 to move the little Dirac operator into preconditioner
 - Can relax convergence precision to 10⁻¹
 - Eight order of magnitude gain, saving of O(10) in overhead
- Deflate the deflation matrix (Heirarchical).
 - Computing 128 low modes is cheap and saves another factor of 10.
 - Reduces O(2000) little Dirac operator iterations to O(20).

	Precision	Heirarchical deflation	iterations
- quark masses	10^{-7}	N	4478
	10^{-7}	Y	250
	10^{-2}	Y	63

 $100 \times$ reduction in little dirac operator overhead!

HDCG solver

Use outer CG A-DEF2 solver, DefICG little dirac solver

Method	$V_{\rm start}$	M1	M2	M ₃	$V_{\rm end}$
A-DEF2	$Qb + P_R x$	$P_R M_{IRS} + Q$	1	1	x_{k+1}
DefICG	$Qb + P_R^{X}$	1	1	$(1 - P_R)$	x_{k+1}
Where					

$$\begin{split} \mathcal{Q} &= \left(\begin{array}{cc} 0 & 0 \\ 0 & M_{SS}^{-1} \end{array} \right) \quad ; \quad \mathcal{P}_R = \left(\begin{array}{cc} 1 & 0 \\ -M_{SS}^{-1}M_{SS} & 0 \end{array} \right) \\ \mathcal{H} &= M_{\mathrm{pc}}^{\dagger}M_{\mathrm{pc}} \quad ; \quad M_{I\!RS} = \left[\mathcal{H} + \lambda_{\mathrm{pc}} \right]^{-1} \end{split}$$

- Shifted matrix inversion M is solved with CG and fixed iteration count (N=8)
- M_{SS} inversion is itself deflated
- All operations in CG are perfromed in single precision except H multiply, x_j and r_j updates.

Tunable parameters

Fine Nvec 40 $4^4 \times L_5$ Fine blocksize 4th order rational λ s \sim 10 $^{-3}$ Fine subspace filter 10^{-6} Fine subspace tolerance Coarse Nvec 128 Coarse blocksize full volume Coarse subspace filter Inverse iteration (3) 10^{-7} Coarse subspace tolerance -1 $\left[M_{\rm DC}^{\dagger}M_{\rm DC} + \lambda_{\rm DC}\right]$ 8 iterations (tol $\sim 10^{-1}$) $\lambda_{\rm pc}$ 1.0 tol 5 \times 10⁻²

1. x arbitrary 2. $x_0 = V_{\text{start}}$ 3. $r_0 = b - \mathcal{H}x_0$ 4. $y_0 = M_1 r_0$; $p_0 = M_2 y_0$ 5 for iteration k 6. $w_k = M_3 \mathcal{H} p_k$ 7. $\alpha_k = (r_k, y_k)/(p_k, w_k)$ 8. $x_{k+1} = x_k + \alpha_k p_k$ 9. $r_{k+1} = r_k - \alpha_k w_k$ 10. $y_k = M_1 r_k$ 11. $\beta_{\mathbf{k}} = (\mathbf{r}_{\mathbf{k}+1}, \mathbf{y}_{\mathbf{k}+1})/(\mathbf{r}_{\mathbf{k}}, \mathbf{y}_{\mathbf{k}})$ 12. $p_{k+1} = M_2 y_{k+1} + \beta_k p_k$ 13. end for 14. $x = V_{end}$

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Performance

Both fine and coarse dirac operators give around 30-50Gflop/s per node on BG/Q. On 48³ × 96 × 24, M_{π} = 140MeV, a^{-1} = 1.73 GeV on 1024 node rack

Algorithm	Tolerance	Cost	Matmuls
CGNE (double)	10^{-8}	1270s	16000
CGNE (mixed)			23000
EigCG (mixed)	10 ⁻⁸	320s	11710
EigCG (mixed)	10 ⁻⁴	55s	1400
EigCG (setup)		10h	
EigCG (vectors)		600 vectors	
HDCG (mixed)	10 ⁻⁸	117s	2060
HDCG (mixed)	10^{-4}	9s	200
HDCG (setup)		40min	
HDCG (vectors)		44 vectors	

- 10^{-4} precision is used for the All-mode-averaging analysis
 - Anticipate at least 5x speedup for RBC-UKQCD valence analysis over EigCG

Conclusions

Comparison	Gain
Exact Solve vs CGNE	11×
Exact Solve vs EigCG	2.7x
Inexact Solve vs EigCG	5×
Setup vs EigCG	10×
Footprint vs EigCG	15-40×

- Developed inexact deflation method to accelerating preconditioned normal equations Larger stencil required substantial algorithmic improvements
- Improved robustness with no formal change to inexact deflation:
 - Little Dirac operator in preconditioner: more robust solver (10x)
 - Heirarchical multi-level deflation (10x)
- Hermitian algorithm features
 - IR shifted preconditioner to replace SAP
 - Preconditioned CG tolerant to loose convergence of inner Krylov solver(s).
 - No flexible algorithm was required
- · Approach based in Krylov space methods, bears similarities to multigrid
- Step towards alleviating L_s scaling of 5d Chiral Fermions (subspace generation)

To do:

 Investigate numerically efficiency of additive Schwarz preconditioning ⁵ Domain decomposed preconditioner should give 2x Gflop/s improvement Greater locality ⇒ candidate exascale algorithm

⁵suggested by Mike Clark