Hierarchically Deflated Conjugate Gradient

Peter Boyle, University of Edinburgh

July 29, 2013
Eigenvector Deflation

Krylov solvers convergence controlled by the condition number

\[\kappa \sim \frac{\lambda_{\text{max}}}{\lambda_{\text{min}}} \]

- Lattice chiral fermions possess an exact index theorem
- Index theorem \(\Rightarrow \exists \) near zero modes separated from zero only by quark mass
- Recent algorithmic progress eliminates low mode subspace from Krylov inversion

EigCG:
- Determine \(N_{\text{vec}} \sim O(V) \) eigenvectors \(\phi_i \) up to some physical \(\lambda \)
- \(48^3 \Rightarrow 600 \) vectors, \(64^3 \Rightarrow 1500 \) vectors
- Significant setup cost & storage cost \(\propto V^2 \)
- Eliminates \(N_{\text{vec}} \) dimensional subspace \(S = \text{sp}\{\phi_i\} \) from problem

\[
M = \begin{pmatrix}
M_{\bar{s}s} & \epsilon \\
\epsilon^\dagger & M_{ss}
\end{pmatrix} ; \quad M_{ss}^{-1} = \frac{1}{\lambda_i} |i\rangle \langle i|
\]

Where \(\epsilon = M_{\bar{s}s} \) is proportional to the error in the eigenvectors
Guess \(\phi = \text{diag}\{0\} \oplus \text{diag}\{\frac{1}{\lambda_i}\} \eta \)
Why can we do better

Luscher’s observation: local coherence of low modes

low virtuality solutions of gauge covariant Dirac equation locally similar

Consider N well separated instantons

- N-zero modes look like admixtures of single instanton eigenmodes
- Divide one mode into chunks centred on each instanton
- All N-zero modes described by the span of these chunks
Luscher’s inexact deflation

Avoid critical slowing down in Krylov solution of

\[M\psi = \eta \]

- Accelerate sparse matrix inversion by treating a vector subspace \(S = \text{span}\{\phi_k\} \) exactly
- If the lowest lying eigenmodes are well contained in \(S \) the “rest” of the problem avoids critical slowing down

Setup:
- Must generate subspace vectors \(\phi_k \) that are “rich” in low modes
- Subdividing these vectors into blocks \(b \)

\[
\phi^b_k(x) = \begin{cases}
\phi_k(x) & ; \quad x \in b \\
0 & ; \quad x \notin b
\end{cases}
\]

yields a much larger subspace

48\(^3\) × 96 lattice with 4\(^4\) blocks ⇒ 12\(^3\) × 24 coarse grid ⇒ \(O(10^4) \) bigger deflation space.

Similar idea previously used in \(\alpha \)SA adaptive multigrid (Brezina et al 2004)
- covariant derivative \(\leftrightarrow \) algebraically smooth.
- blocks \(\leftrightarrow \) aggregates.

\(\alpha \)SA \(\rightarrow \) US multigrid collaboration & Wuppertal

Attempt using \(D^\dagger D \) for DWF arXiv:1205.2933 (Cohen, Brower, Clark, Osborn)
Inexact deflation framework

Introduce subspace projectors

\[P_S = \sum_{k,b} |\phi_k^b \rangle \langle \phi_k^b | \quad ; \quad P_S = 1 - P_S \]

Compute \(M_{ss} \) as

\[M = \begin{pmatrix} M_{ss} & M_{s\bar{s}} \\ M_{\bar{s}s} & M_{\bar{s}\bar{s}} \end{pmatrix} = \begin{pmatrix} P_{\bar{s}}MP_{\bar{s}} & P_{\bar{s}}MP_{\bar{s}} \\ P_{\bar{s}}MP_{s} & P_{\bar{s}}MP_{s} \end{pmatrix} \]

- Can represent matrix \(M \) exactly on this subspace by computing its matrix elements, known as the little Dirac operator

\[A_{jk}^{ab} = \langle \phi_j^a | M | \phi_k^b \rangle \]

\[(M_{ss}) = A_{ij}^{ab} |\phi_i^a \rangle \langle \phi_j^b | \]

and the subspace inverse can be solved by Krylov methods and is:

\[Q = \begin{pmatrix} 0 & 0 \\ 0 & M_{ss}^{-1} \end{pmatrix} \]

\[M_{ss}^{-1} = (A^{-1})_{ij}^{ab} |\phi_i^a \rangle \langle \phi_j^b | \]

A inherits a sparse structure from \(M \) - well separated blocks do not connect through \(M \)

\(^1\) Coarse grid matrix in MG
Subspace Schur decomposition

We can Schur decompose any matrix

\[M = UDL = \begin{bmatrix} M_{\bar{s}\bar{s}} & M_{\bar{s}s} \\ M_{s\bar{s}} & M_{ss} \end{bmatrix} = \begin{bmatrix} 1 & M_{\bar{s}s} M_{ss}^{-1} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} S & 0 \\ 0 & M_{ss} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ M_{ss}^{-1} M_{s\bar{s}} & 1 \end{bmatrix} \]

Note that

\[P_L M = \begin{bmatrix} S & 0 \\ 0 & 0 \end{bmatrix} \]

yields the Schur complement

\[S = M_{\bar{s}\bar{s}} - M_{\bar{s}s} M_{ss}^{-1} M_{s\bar{s}} \]

L and U related to Luscher’s projectors \(P_L \) and \(P_R \)

\[P_L = P_{\bar{s}} U^{-1} = \begin{pmatrix} 1 & -M_{\bar{s}s} M_{ss}^{-1} \\ 0 & 0 \end{pmatrix} \]

\[P_R = L^{-1} P_{\bar{s}} = \begin{pmatrix} 1 & 0 \\ -M_{ss}^{-1} M_{s\bar{s}} & 0 \end{pmatrix} \]

Also, \(QM = 1 - P_R \)

\(^2\text{Galerkin oblique projectors in MG} \)
Luscher's algorithm

Multiply $M\psi = \eta$ by $1 - P_L$ and P_L yielding $(1 - P_R)\psi$ and $P_R\psi$:

$$(1 - P_R)\psi = M_{ss}^{-1}\eta_s$$
$$(P_L M)\chi = P_L \eta$$

$$\psi = P_R \chi + M_{ss}^{-1}\eta_s$$

- Each step of an outer Krylov solver involves an inner Krylov solution of the little Dirac op
 - This enters the matrix $P_L M$ being inverted and errors propagate into solution
 - Luscher tightens the precision during convergence; uses history forgetting flexible GCR
- Suppress little Dirac operator with Schwarz alternating procedure (SAP) preconditioner

$$(P_L M) M_{SAP} \phi = P_L \eta \quad ; \quad \psi = M_{SAP} \phi$$

- Non-hermitian system possible as evals of D_W live in right half of complex plane:
- Little Dirac operator for D_W is nearest neighbour
 - Red black preconditioning of Little dirac op possible
 - Schwarz alternating procedure possible as D_W does not connect red to red.
Generalisation to 5d Chiral fermions

Krylov solution of Hermitian system necessary (CG-NR, MCR-NR)
Aim to speed up the red-black preconditioned system as this starts better conditioned

\[\mathcal{H} = \left(M_{oo} - M_{oe} M_{ee}^{-1} M_{eo} \right) \dagger \left(M_{oo} - M_{oe} M_{ee}^{-1} M_{eo} \right) = M_{\text{prec}}^\dagger M_{\text{prec}} \]

- Matrix being deflated is next-to-next-to-next-to-nearest-neighbour!

Tasks!
- Must find further suppression of little Dirac operator overhead as LDop more costly
- Must find a replacement for the Schwarz preconditioner
- Must find appropriate solver: \((P_L M)M_{SAP}\) nonhermitian matrix so unsuitable for CG
- Must ensure system is tolerant to ill convergence of inner Krylov solver(s).
Little Dirac Operator

4 hop operator is painful as it connects 3280 neighbours!

- Limit the stencil of the Little Dirac operator by requiring block $\geq 4^4$
- Mobius fermions $M_{e\bar{e}}^{-1}$ is non-local in s-direction \Rightarrow blocks stretch full s-direction
- Sparse in 4d with next-to-next-to-next-to-nearest coupling
- Matrix still connects to 80 neighbours

 $$(\pm \hat{x}), (\pm \hat{y}), (\pm \hat{z}), (\pm \hat{t})$$

 $$(\pm \hat{x} \pm \hat{y}), (\pm \hat{x} \pm \hat{z}), (\pm \hat{y} \pm \hat{z}), (\pm \hat{x} \pm \hat{t}), (\pm \hat{y} \pm \hat{t}), (\pm \hat{z} \pm \hat{t})$$

 $$(\pm \hat{x} \pm \hat{y} \pm \hat{z}), (\pm \hat{x} \pm \hat{y} \pm \hat{t}), (\pm \hat{x} \pm \hat{z} \pm \hat{t}), (\pm \hat{y} \pm \hat{z} \pm \hat{t}), (\pm \hat{z} \pm \hat{t} \pm \hat{t})$$

- Underlying cost at least ten times more than non-Hermitian system
- Reducing to 4d has saved L_s factor but may require more vectors to describe 5th dimension
• 10 × 10 matrix-vector complex multiply reasonably high cache reuse
 • Using IBM xlc vector intrinsics gives adequate performance
 • Single precision accelerated gives around 50 Gflop/s per node in L2 cache
 • (re)Discovered bug in L2 cache around 4 months after Argonne

• 80 small messages of order 1-5 KB
 • Programme BG/Q DMA engines directly to eliminate MPI overhead
 • Asynchronous send overhead under 10 microseconds with precomputed DMA descriptors.
 • 50× faster than MPI calls.
Infra-red shift preconditioner

Since we are deflating the low modes, seek approximate inverse preconditioner for Hermitian system that is accurate for high modes.

- Naive left-right preconditioner:

 \[L^\dagger (P_L \mathcal{H}) L \phi = L^\dagger P_L \eta \]

 \[L \sim (\mathcal{H})^{-\frac{1}{2}} \]

- Better to use preconditioned CG (p 278 Saad) with Hermitian preconditioner \(M_P \)

 \[M_P = L^\dagger L \sim (\mathcal{H})^{-1} \]

- Use fixed number of shifted CG iterations as preconditioner (IR shifted preconditioner)
 - Krylov solver seeks optimal polynomial under some norm

 \[M_{IRS} = \frac{1}{\mathcal{H} + \lambda} \]

 - \(\lambda \) is an gauge covariant infra-red regulator that shifts the lowest modes
 - Plays similar role to the domain size in SAP
 - Keeps the Krylov solver working hard on the high mode region
 - Does not have locality benefit of SAP\(^3\)

\(^3\)Comms in BG/Q tolerate this, but Additive Schwarz is worth investigating for future machines (suggested by Mike Clark)
Robustness

Two inner Krylov solvers

- Little Dirac operator inversion \(Q \equiv M_{SS}^{-1} \)
- IR shifted preconditioner inversion \(M_{IRS} = \frac{1}{\mathcal{H} + \lambda} \)

Curious robustness effects: during solution to \(10^{-8} \) on a \(16^3 \) lattice

<table>
<thead>
<tr>
<th>(M_{SS}^{-1}) residual</th>
<th>(M_{IRS}) residual</th>
<th>Iteration count</th>
</tr>
</thead>
<tbody>
<tr>
<td>(10^{-11})</td>
<td>(10^{-8})</td>
<td>36</td>
</tr>
<tr>
<td>(10^{-8})</td>
<td>(10^{-8})</td>
<td>Non converge 4</td>
</tr>
<tr>
<td>(10^{-11})</td>
<td>(10^{-8})</td>
<td>36</td>
</tr>
<tr>
<td>(10^{-11})</td>
<td>(10^{-4})</td>
<td>36</td>
</tr>
<tr>
<td>(10^{-11})</td>
<td>(10^{-2})</td>
<td>36</td>
</tr>
</tbody>
</table>

Although flexible CG (Notay 1999) exists better to understand why the CG is tolerant to variability in \(M \) but not \(Q \)

\[4\] smallest residual is \(10^{-7} \) then diverges. Here Luscher introduced flexible algorithms.
Robustness

Consider preconditioned CG with \(A = P_L \mathcal{H} = \begin{pmatrix} 1 & -M_{SS} M_{SS}^{-1} \\ 0 & 0 \end{pmatrix} \mathcal{H} \)

1. \(r_0 = b - A x_0 \)
2. \(z_0 = M_{IRS} r_0 \); \(p_0 = z_0 \)
3. for iteration \(k \)
4. \(\alpha_k = (r_k, z_k) / (p_k, A p_k) \)
5. \(x_{k+1} = x_k + \alpha_k p_k \)
6. \(r_{k+1} = r_k - \alpha_k A p_k \)
7. \(z_{k+1} = M_{IRS} r_{k+1} \)
8. \(\beta_k = (r_{k+1}, z_{k+1}) / (r_k, z_k) \)
9. \(p_{k+1} = z_{k+1} + \beta_k p_k \)
10. end for

- Noise in the preconditioner \(M_{IRS} \) only enters the search direction \(\alpha_k \) is based on matrix elements of \(P_L \mathcal{H} \).

- Better to use the Little Dirac operator inverse as a preconditioner ...and not separate the solution into subspace and complement ...already discussed as advantage of MG in Boston papers
Combining preconditioners

- Have little Dirac operator Q and M_{IRS} representing approximate inverse
 - Q on subspace containing low mode
 - M_{IRS} on high mode space
 - splitting is necessarily inexact
- Options for combining these as a preconditioner
 - Additive
 \[M_{IRS} + Q \]
 - Consider alternating error reduction steps
 \[
 \begin{align*}
 x_{i+1} & = x_i + M_{IRS}[b - \mathcal{H}x_i] \\
 x_{i+2} & = x_{i+1} + Q[b - \mathcal{H}x_{i+1}] \\
 & = x_i + M_{IRS}[b - \mathcal{H}x_i] + Q[b - \mathcal{H}[x_i + M_{IRS}[b - \mathcal{H}x_i]]] \\
 & = x_i + [(1 - Q\mathcal{H})M_{IRS} + Q](b - \mathcal{H}x_i) \\
 & = x_i + [P_R M_{IRS} + Q](b - \mathcal{H}x_i)
 \end{align*}
 \]
- Infer family of preconditioner

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Preconditioner</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>additive</td>
<td>$M_{IRS} + Q$</td>
<td>AD</td>
</tr>
<tr>
<td>M_{IRS}, Q</td>
<td>$P_R M_{IRS} + Q$</td>
<td>A-DEF2</td>
</tr>
<tr>
<td>Q, M_{IRS}</td>
<td>$M_{IRS}P_L + Q$</td>
<td>A-DEF1</td>
</tr>
<tr>
<td>Q, M_{IRS}, Q</td>
<td>$P_R M_{IRS}P_L + Q$</td>
<td>Balancing Neumann Neumann (BNN)</td>
</tr>
<tr>
<td>Q, M_{IRS}, Q</td>
<td>$M_{IRS}P_L + P_R M_{IRS} + Q - M_{IRS}P_L \mathcal{H}M_{IRS}$</td>
<td>MG Hermitian V(1,1) cycle</td>
</tr>
</tbody>
</table>
Generalised framework for inexact deflation solvers

Extend framework of Tang, Nabben, Vuik, Erlangga (2009) to three levels

Take $Q = \begin{pmatrix} 0 & 0 \\ 0 & M_{SS}^{-1} \end{pmatrix}$ and $M_{IRS} = (\mathcal{H} + \lambda)^{-1}$

<table>
<thead>
<tr>
<th>Method</th>
<th>V_{start}</th>
<th>M_1</th>
<th>M_2</th>
<th>M_3</th>
<th>V_{end}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREC</td>
<td>x</td>
<td>M_{IRS}</td>
<td>1</td>
<td>1</td>
<td>x_{k+1}</td>
</tr>
<tr>
<td>AD</td>
<td>x</td>
<td>$M_{IRS} + Q$</td>
<td>1</td>
<td>1</td>
<td>x_{k+1}</td>
</tr>
<tr>
<td>DEF1</td>
<td>x</td>
<td>M_{IRS}</td>
<td>1</td>
<td>P_L</td>
<td>$Qb + P_{R_k}x_{k+1}$</td>
</tr>
<tr>
<td>DEF2</td>
<td>$Qb + P_{R_k}$</td>
<td>M_{IRS}</td>
<td>P_R</td>
<td>1</td>
<td>x_{k+1}</td>
</tr>
<tr>
<td>A-DEF1</td>
<td>x</td>
<td>$M_{IRS}P_L + Q$</td>
<td>P_R</td>
<td>1</td>
<td>x_{k+1}</td>
</tr>
<tr>
<td>A-DEF2</td>
<td>$Qb + P_{R_k}$</td>
<td>$P_RM_{IRS} + Q$</td>
<td>1</td>
<td>1</td>
<td>x_{k+1}</td>
</tr>
<tr>
<td>BNN</td>
<td>x</td>
<td>$P_RM_{IRS}P_L + Q$</td>
<td>1</td>
<td>1</td>
<td>x_{k+1}</td>
</tr>
</tbody>
</table>

- DEF1/DEF2/ADEF1/ADEF2/BNN are equivalent
 - identical iterates with V_{start} up to Q, M_{IRS} error
 - Luscher’s algorithm corresponds to DEF1
- Move little Dirac operator into the preconditioner with formally identical convergence to inexact deflation!
- A-DEF2 is most tolerant of preconditioner variability

Remain in deflated Krylov picture but make it Heirarchical by deflating the deflation matrix Q

Algorithm

1. x arbitrary
2. $x_0 = V_{\text{start}}$
3. $r_0 = b - \mathcal{H}x_0$
4. $y_0 = M_1r_0 ; p_0 = M_2y_0$
5. for iteration k
6. $w_k = M_3\mathcal{H}p_k$
7. $\alpha_k = (r_k \cdot y_k) / (p_k \cdot w_k)$
8. $x_{k+1} = x_k + \alpha_k p_k$
9. $r_{k+1} = r_k - \alpha_k w_k$
10. $y_k = M_1r_k$
11. $\beta_k = (r_{k+1} \cdot y_{k+1}) / (r_k \cdot y_k)$
12. $p_{k+1} = M_2y_{k+1} + \beta_k p_k$
13. end for
14. $x = V_{\text{end}}$
Why does CG work here?

- Hermiticity of M_1 clear for BNN but not A-DEF1/2

 Theorem: for $V_{\text{start}} = Qb + P_{Rx}$ A-DEF2 is identical to BNN.

- We have from $Q\mathcal{H} = (1 - P_R)$

 $Qr_0 = Q[\mathcal{H}V_{\text{start}} - b] = (1 - P_R)[Qb + P_{Rx}] - Qb = P_R Qb = 0$

 $Q\mathcal{H}p_0 = (1 - P_R)[P_R M P_L + Q]r_0 = 0$

- get induction steps:

 $Qr_{j+1} = Qr_j - \alpha_j Q\mathcal{H}p_j = 0$

 $Q\mathcal{H}p_{j+1} = (1 - P_R)[P_R M P_L + Q]r_j + \beta_j Q\mathcal{H}p_j = 0$

- Can also show $P_L r_0 = 0$ and $P_L \mathcal{H}p_0 = \mathcal{H}p_0$ so that

 $P_L \mathcal{H}p_{j+1} = \mathcal{H}P_R [P_R M P_L + Q]r_j + \beta_j p_j = \mathcal{H}p_{j+1}$

 and

 $P_L r_{j+1} = P_L r_j - \alpha_j P_L \mathcal{H}p_j = r_j - \alpha_j \mathcal{H}p_j = r_{j+1}$

 BNN then retains $P_L r_j = r_j$ in exact arithmetic

 \Rightarrow BNN iteration $(P_R M P_L r_j)$ and A-DEF2 iteration $(P_R M r_j)$ equivalent up to convergence error

- DEF1(Luscher), DEF2, A-DEF1, A-DEF2, BNN are ALL equivalent up to convergence

 BUT they differ hugely in sensitivity to convergence error in Q
Hermiticity and improved subspace generation

- Hermitian system gains the properties
 \[P_L^\dagger = P_R \quad (P_L M)^\dagger = P_L M \]

- Since we use \(\mathcal{H} = M_{\text{prec}}^\dagger M_{\text{prec}} \) we have a Hermitian Positive (semi) Definite matrix. Generate subspace with rational multi-shift solver applied to Gaussian noise
 \[R(\eta^{\text{Gaussian}}) \propto \frac{1}{(\mathcal{H} + \lambda)(\mathcal{H} + \lambda + \epsilon)(\mathcal{H} + \lambda + 2\epsilon)(\mathcal{H} + \lambda + 3\epsilon)} \]

- Classic low pass filtering problem – use rational filter
 - Gain \(1/x^4 \) suppression in single pass \textit{without} inverse iteration
 - \(\epsilon \sim 10^{-3} \) adds IR safety to the inversion \(O(1000) \) iterations per subspace vector
 - NB Also possible for \(\gamma_5 D_W \)
 - Subspace support only on walls possible. Potential to regain factor of \(L_s \)?
Subspace tricks

- Improved subspace generation
 1. Solve rational in single precision to loose tolerance \((10^{-4})\) and with reduced \(L_s\)
 2. Compute HDCG operator
 3. Refine subspace: loose \((10^{-3})\) shifted HDCG inverse fills into bulk
 4. Recompute HDCG operator

- 2-4x reduction in subspace generation over double precision rational
- Not all subspace vectors need be extensive in 5th dim
- Removes \(L_s\) factor from the expensive low mode subspace
- Gives same CG count as high precision rational filter

- Subspace reuse: recompute little Dop matrix elements with no change to subspace
 - Twisted boundary conditions
 - Moderate change in mass – not obvious for 5d chiral fermions but works!

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Volume</th>
<th>mass</th>
<th>Twist</th>
<th>Solve time</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGNE</td>
<td>(32^4)</td>
<td>0.01</td>
<td>(\frac{\pi}{L} (0, 0, 0))</td>
<td>30s</td>
</tr>
<tr>
<td>HDCG</td>
<td>(32^4)</td>
<td>0.01</td>
<td>(\frac{\pi}{L} (0, 0, 0))</td>
<td>6.9s</td>
</tr>
<tr>
<td>HDCG</td>
<td>(32^4)</td>
<td>0.01</td>
<td>(\frac{\pi}{L} (0.2, 0, 0))</td>
<td>6.9s</td>
</tr>
<tr>
<td>HDCG</td>
<td>(32^4)</td>
<td>0.01</td>
<td>(\frac{\pi}{L} (0.5, 0.5, 0.0))</td>
<td>9.2s</td>
</tr>
<tr>
<td>HDCG</td>
<td>(32^4)</td>
<td>0.01</td>
<td>(\frac{\pi}{L} (0.5, 0.5, 0.5))</td>
<td>9.8s</td>
</tr>
<tr>
<td>HDCG</td>
<td>(32^4)</td>
<td>0.1</td>
<td>(\frac{\pi}{L} (0, 0, 0))</td>
<td>3.6s</td>
</tr>
<tr>
<td>HDCG</td>
<td>(32^4)</td>
<td>0.01</td>
<td>(\frac{\pi}{L} (0, 0, 0))</td>
<td>6.9s</td>
</tr>
<tr>
<td>HDCG</td>
<td>(32^4)</td>
<td>0.005</td>
<td>(\frac{\pi}{L} (0, 0, 0))</td>
<td>7.4s</td>
</tr>
<tr>
<td>HDCG</td>
<td>(32^4)</td>
<td>0.001</td>
<td>(\frac{\pi}{L} (0, 0, 0))</td>
<td>7.8s</td>
</tr>
</tbody>
</table>
Hierarchical deflation

Deflate the deflation matrix!

- Block these vectors ϕ_k^b (e.g. $4^4 \times L_s$) and compute little Dirac operator
 Need only apply $N_{\text{stencil}} = 80$ matrix multiplies per vector to compute little Dirac operator with a Fourier trick. Single precision suffices
 Can detect stencil from matrix application and generate optimal code for 1,2,4 hop operators

- Compute second level of deflation hierarchy using inverse iteration on Gaussian noise.
- Diagonalise this basis to make multiplication cheap

- Massively reduce convergence precision:
 - Use A-DEF2 to move the little Dirac operator into preconditioner
 - Can relax convergence precision to 10^{-2}
 - Eight order of magnitude gain, saving of $O(10)$ in overhead

- Deflate the deflation matrix (Heirarchical).

 - Computing 128 low modes is cheap and saves another factor of 10.
 - Reduces $O(2000)$ little Dirac operator iterations to $O(20)$.

<table>
<thead>
<tr>
<th>Precision</th>
<th>Hierarchical deflation</th>
<th>iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-7}</td>
<td>N</td>
<td>4478</td>
</tr>
<tr>
<td>10^{-7}</td>
<td>Y</td>
<td>250</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>Y</td>
<td>63</td>
</tr>
</tbody>
</table>

From 48^3 at physical quark masses

100 x reduction in little dirac operator overhead!
HDCG solver

Use outer CG A-DEF2 solver, DeflCG little dirac solver

Method	V_{start}	M_1	M_2	M_3	V_{end}
A-DEF2 | $Qb + P_R x$ | $P_R M_{\text{IRS}} + Q$ | I | I | x_{k+1}
DeflCG | $Qb + P_R x$ | I | I | $(1 - P_R)$ | x_{k+1}

Where

$$Q = \begin{pmatrix} 0 & 0 \\ 0 & M_{SS}^{-1} \end{pmatrix}; \quad P_R = \begin{pmatrix} 1 & 0 \\ -M_{SS}^{-1} M_{SS} & 0 \end{pmatrix}$$

$$\mathcal{H} = M_{pc}^\dagger M_{pc} \quad ; \quad M_{\text{IRS}} = [\mathcal{H} + \lambda_{pc}]^{-1}$$

- Shifted matrix inversion M is solved with CG and fixed iteration count (N=8)
- M_{SS} inversion is itself deflated
- All operations in CG are performed in single precision except \mathcal{H} multiply, x_j and r_j updates.

Tunable parameters

- Fine N_{vec}:
 - 40
- Fine blocksize:
 - $4^4 \times L_s$
- Fine subspace filter:
 - 4th order rational $\lambda_S \sim 10^{-3}$
- Fine subspace tolerance:
 - 10^{-6}
- Coarse N_{vec}:
 - 128
- Coarse blocksize:
 - full volume
- Coarse subspace filter:
 - Inverse iteration (3)
- Coarse subspace tolerance:
 - 10^{-7}
- $M_{pc}^\dagger M_{pc} + \lambda_{pc}$:
 - 8 iterations (tol $\sim 10^{-1}$)
- λ_{pc}:
 - 1.0
- M_{SS}^{-1}:
 - tol 5×10^{-2}

1. x arbitrary
2. $x_0 = V_{\text{start}}$
3. $r_0 = b - \mathcal{H} x_0$
4. $y_0 = M_1 r_0 ; p_0 = M_2 y_0$
5. for iteration k
6. $w_k = M_3 \mathcal{H} p_k$
7. $\alpha_k = (r_k, y_k) / (p_k, w_k)$
8. $x_{k+1} = x_k + \alpha_k p_k$
9. $r_{k+1} = r_k - \alpha_k w_k$
10. $y_k = M_1 r_k$
11. $\beta_k = (r_{k+1}, y_{k+1}) / (r_k, y_k)$
12. $p_{k+1} = M_2 y_{k+1} + \beta_k p_k$
13. end for
14. $x = V_{\text{end}}$
Both fine and coarse dirac operators give around 30-50Gflop/s per node on BG/Q.
On $48^3 \times 96 \times 24$, $M_\pi = 140$MeV, $a^{-1} = 1.73$ GeV on 1024 node rack

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Tolerance</th>
<th>Cost</th>
<th>Matmuls</th>
</tr>
</thead>
<tbody>
<tr>
<td>CGNE (double)</td>
<td>10^{-8}</td>
<td>1270s</td>
<td>16000</td>
</tr>
<tr>
<td>CGNE (mixed)</td>
<td></td>
<td></td>
<td>23000</td>
</tr>
<tr>
<td>EigCG (mixed)</td>
<td>10^{-8}</td>
<td>320s</td>
<td>11710</td>
</tr>
<tr>
<td>EigCG (mixed)</td>
<td>10^{-4}</td>
<td>55s</td>
<td>1400</td>
</tr>
<tr>
<td>EigCG (setup)</td>
<td></td>
<td>10h</td>
<td></td>
</tr>
<tr>
<td>EigCG (vectors)</td>
<td></td>
<td>600 vectors</td>
<td></td>
</tr>
<tr>
<td>HDCG (mixed)</td>
<td>10^{-8}</td>
<td>117s</td>
<td>2060</td>
</tr>
<tr>
<td>HDCG (mixed)</td>
<td>10^{-4}</td>
<td>9s</td>
<td>200</td>
</tr>
<tr>
<td>HDCG (setup)</td>
<td></td>
<td>40min</td>
<td></td>
</tr>
<tr>
<td>HDCG (vectors)</td>
<td></td>
<td>44 vectors</td>
<td></td>
</tr>
</tbody>
</table>

10^{-4} precision is used for the All-mode-averaging analysis

- Anticipate at least 5x speedup for RBC-UKQCD valence analysis over EigCG
Conclusions

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact Solve vs CGNE</td>
<td>11x</td>
</tr>
<tr>
<td>Exact Solve vs EigCG</td>
<td>2.7x</td>
</tr>
<tr>
<td>Inexact Solve vs EigCG</td>
<td>5x</td>
</tr>
<tr>
<td>Setup vs EigCG</td>
<td>10x</td>
</tr>
<tr>
<td>Footprint vs EigCG</td>
<td>15-40x</td>
</tr>
</tbody>
</table>

- Developed inexact deflation method to accelerating preconditioned normal equations. Larger stencil required substantial algorithmic improvements.
- Improved robustness with no formal change to inexact deflation:
 - Little Dirac operator in preconditioner: more robust solver (10x)
 - Heirarchical multi-level deflation (10x)
- Hermitian algorithm features
 - IR shifted preconditioner to replace SAP
 - Preconditioned CG tolerant to loose convergence of inner Krylov solver(s).
 - No flexible algorithm was required
- Approach based in Krylov space methods, bears similarities to multigrid
- Step towards alleviating L_s scaling of 5d Chiral Fermions (subspace generation)

To do:
- Investigate numerically efficiency of additive Schwarz preconditioning\(^5\)
 - Domain decomposed preconditioner should give 2x Gflop/s improvement
 - Greater locality \Rightarrow candidate exascale algorithm

\(^5\) suggested by Mike Clark