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Abstract

We present a lower bound for the smallest nonzero eigenvalue

of the Landau-gauge Faddeev-Popov matrix in terms of the

smallest nonzero lattice momentum and of a parameter

characterizing the geometry of the first Gribov region. This

allows a simple and intuitive description of the infinite-volume

limit in the ghost sector. In particular, we show how

nonperturbative effects may be quantified by the rate at which

typical thermalized and gauge-fixed configurations approach the

Gribov horizon. Our analytic results are verified numerically

through an informal, free and easy, approach.
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Confinement and Green’s Functions

How does linearly rising potential (seen in lattice QCD) come
about?

Green’s functions carry all information of a QFT’s physical and
mathematical structure. Gluon propagator (two-point function) as
the most basic quantity of QCD.

Confinement given by behavior at large distances (small
momenta) ⇒ nonperturbative study of IR gluon propagator.
Proposal by Mandelstam (1979) linking linear potential to infrared
behavior of gluon propagator as 1/p4.

V (r) ∼

∫
d3p

p4
eip·r ∼ r .

Gribov-Zwanziger confinement scenario based on suppressed
gluon propagator and enhanced ghost propagator in the infrared.
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Lattice Landau gauge

The (lattice) Landau gauge is imposed by minimizing the functional

S[U ;ω] = −Tr
∑

x,µ

ω(x) Uµ(x) ω
†(x+ a eµ) ,

with respect to the lattice gauge transformation ω(x) ∈ SU(N) . This
defines the first Gribov region Ω ≡ {U : ∂ ·A = 0, M = −D · ∂ ≥ 0 } .

All gauge orbits intersect Ω

(G.Dell’Antonio & D.Zwanziger,
CMP 138, 1991) but the gauge
fixing is not unique (Gribov copies).
Absolute minima of S[U ;ω] define
the fundamental modular region Λ,
free of Gribov copies on its interior.
(Finding the absolute minimum is a
spin-glass problem.)

Ω
Λ

Γ
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The RegionΩ: Properties

Three important properties have been proven
(D.Zwanziger, NPB 209, 1982) for the Gribov region Ω:

1. the trivial vacuum Aµ = 0 belongs to Ω;

2. the region Ω is convex;

3. the region Ω is bounded in every direction.

(The same properties can be proven also for the fundamental modular
region Λ.)

The first property is trivial, since Aµ = 0 implies that
M(b, x; c, y)[0] is (minus) the Laplacian −∂2 (which is a
semi-positive-definite operator).
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Convexity of Ω

The gauge condition ∂ ·A = 0 and the operators Dbc(x, y)[A],
M(b, x; c, y)[A] = −∂2 +K[A] and K[A] are linear in the gauge field Aµ:

M[γA1 + (1− γ)A2] = −∂2 +K[γA1 + (1− γ)A2]

= γ
(
−∂2 +K[A1]

)
+ (1− γ)

(
−∂2 +K[A2]

)

= γM[A1] + (1− γ)M[A2]

and, for γ ∈ [0, 1], M[γA1 + (1− γ)A2] is semi-positive definite if
M[A1] and M[A2] are semi-positive definite. Also

γ ∂ ·A1 + (1− γ) ∂ ·A2 = 0

if ∂ ·A1 = ∂ ·A2 = 0. =⇒ The convex combination γA1 + (1− γ)A2

belongs to Ω, for any value of γ ∈ [0, 1], if A1, A2 ∈ Ω.
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Boundary of Ω

Using properties 1 and 2 and with A1 = 0, A2 = A, 1− γ = ρ we have

M[ρA] = −∂2 +K[ρA] = (1− ρ) (−∂2) + ρM[A]

and, if A ∈ Ω, then ρA ∈ Ω for any value of ρ ∈ [0, 1].

Since the color indices of K[A] are given by Kbc[A] ∼ f bceAe
µ, we have

that all the diagonal elements of K[A] are zero =⇒ the trace of the
operator K[A] is zero.

The operator Kbc
xy[A] is real and symmetric (under simultaneous

interchange of x with y and b with c) and its eigenvalues are real =⇒ at
least one of the eigenvalues of K[A] is (real and) negative. If φneg is
the corresponding eigenvector, that for a sufficiently large (but finite)
value of ρ > 1 the scalar product (φneg,M[ρA]φneg) must be negative
=⇒ M[ρA] is not semi-positive definite and ρA /∈ Ω.
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The Infinite-Volume Limit (I)

In order to study the infra-red sector of the theory on the lattice

we need to remove the infra-red cutoff =⇒ take the

infinite-volume limit.

The Main Axiom
At very large volumes the functional integration gets

concentrated on the boundary ∂Ω of the first Gribov

region Ω.

For very large dimensionality and for large volumes, by

considering the interplay among the volume of the configuration

space, the Boltzmann weight and the step function used to

constrain the functional integration to Ω, one expects that

entropy favors configurations near the boundary ∂Ω.
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The Infinite-Volume Limit (II)

One can check if lattice data support λ1[A] → 0 in the

infinite-volume limit =⇒ A ∈ ∂Ω.

1/L [GeV]
-210×4 -210×5 -210×6 -210×7 -210×8

]2
 [

G
eV

s
ω

-310×3

-210

-210×2

-210×3

Smallest eigenvalue of the Faddeev-Popov operator

Infinite-volume limit extrapolation λ1[A] ∼ Lc for the 3d SU(2)

case (A.C., A.Maas & T.Mendes, PRD 74, 2006). (Similar results

in 2d and 4d.)
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The Infinite-Volume Limit (III)

On the lattice, the ghost propagator is given by

G(p) =
1

N2
c − 1

∑

x, y, a

e−2πi k·(x−y)

V
M−1(a, x; a, y)

=
1

N2
c − 1

∑

i,λi 6=0

1

λi

∑

a

|ψ̃i(a, p)|
2 ,

where ψi(a, x) and λi are the eigenvectors and eigenvalues of the FP
matrix. Then, one can prove (A.C. & T.Mendes, PRD 78, 2008) that

1

N2
c − 1

1

λ1

∑

a

|ψ̃1(a, p)|
2 ≤ G(p) ≤

1

λ1
.

If λ1 behaves as L−2−α in the infinite-volume limit, α > 0 is a
necessary condition to obtain an IR-enhanced ghost propagator G(p).
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The Infinite-Volume Limit (IV)

New Axiom Formulation
The key point seems to be the rate at which λ1

goes to zero, which, in turn, should be related to
the rate at which a thermalized and gauge-fixed
configuration approaches ∂Ω.

These are only qualitative statements!

✓

✒

✏

✑
How do we relate λ1

to the geometry of the Gribov region Ω?
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Lower bound for λ1 (I)

Consider a configuration A′ belonging to the boundary ∂Ω of Ω and
write

λ1 [M[ρA′] ] = λ1
[
(1− ρ) (−∂2) + ρM[A′]

]
.

From the second property, ρA′ ∈ Ω for ρ ∈ [0, 1]. Since

λ1
[
(1− ρ) (−∂2) + ρM[A′]

]

= min
χ

(
χ ,

[
(1− ρ) (−∂2) + ρM[A′]

]
χ
)
,

with (χ , χ) = 1 and χ 6= constant, we can use the concavity of the
minimum function

min
χ

(χ, [M1 +M2]χ) ≥ min
χ

(χ,M1χ) + min
χ

(χ,M2χ) .
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Lower bound for λ1 (II)

We find

λ1
[
M[ρA′]

]
= λ1

[
(1− ρ) (−∂2) + ρM[A′]

]

≥ (1− ρ)min
χ

(
χ, (−∂2)χ

)
+ ρmin

χ

(
χ ,M[A′]χ

)

= (1− ρ) p2min .

Recall that A′ ∈ ∂Ω =⇒ the smallest non-trivial eigenvalue of the

FP matrix M[A′] is null, and that the smallest non-trivial

eigenvalue of (minus) the Laplacian −∂2 is p2min.

✗

✖

✔

✕

In the Abelian case one has M = −∂2 and λ1 = p2min. =⇒

All non-Abelian effects are included in the (1− ρ) factor

(and in the inequality).
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Lower bound for λ1 (III)

As the lattice side L goes to infinity, λ1 [M[ρA′] ] cannot go to

zero faster than (1− ρ) p2min. Since p2min ∼ 1/L2 at large L =⇒

λ1 behaves as L−2−α in the same limit, with α > 0, only if 1− ρ

goes to zero at least as fast as L−α.

With ρA′ = A the above inequality may also be written as

λ1 [M[A] ] ≥ [1− ρ(A)] p2min .

Here 1− ρ(A) ≤ 1 measures the distance of a configuration

A ∈ Ω from the boundary ∂Ω (in such a way that ρ−1A ∈ ∂Ω).

This result applies to any Gribov copy belonging to Ω.
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Other Inequalities

As a consequence of the above result, we can find several new bounds with a simple
geometrical interpretation. Using

G(A, pmin) =
1

p2min

1

1− σ(A, pmin)
≤

1

λ1(A)

we have

G(A, p) ≤
1

[1− ρ(A)] p2min

and

σ(A, pmin) ≤ ρ(A) ,

which is a stronger version of the no-pole condition [σ(A, p) < 1 for p2 > 0], used to
impose the restriction of the physical configuration space to the region Ω. Similarly, for
the horizon function one can prove

H(A)

dV (N2
c − 1)

≡ h(A) ≤ ρ(A) .

[Note: σ(A, 0) = h(A) to all orders in the gauge coupling (M.A.L.Capri et al., PLB 2013).]
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Simulating the Math

We used 70 configurations, for the SU(2) case at β = 2.2, for V = 164,
244, 324, 404 and 50 configurations for V = 484, 564, 644, 724, 804.

In order to verify the third property of the region Ω we applied scale
transformations Â(i)

µ (x) = τiA
(i−1)
µ (x) to the gauge configuration A with

τ0 = 1,

τi = δ τi−1,

δ = 1.001 if λ1 ≥ 5 × 10−3,

δ = 1.0005 if λ1 ∈ [5 × 10−4, 5 × 10−3)

and δ = 1.0001 if λ1 < 5 × 10−4,

where λ1 is evaluated at the step i− 1. After n steps, the modified
gauge field Â(n)

µ (x) does not belong to the region Ω anymore, i.e. the
eigenvalue λ1 of M[Â(n)] is negative (while λ2 is still positive).
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Crossing the Horizon (I)

N max(n) min(n) 〈n〉 Rbefore/1000 Rafter/1000

16 30 6 17.2 15(3) -30(12)

24 27 4 15.1 20(7) -26(6)

32 19 5 11.7 26(9) -51(20)

40 18 4 9.4 155(143) -21(6)

48 13 2 7.8 21(5) -21(5)

56 12 3 7.6 16(4) -21(7)

64 11 2 6.8 20(7) -42(18)

72 11 2 6.1 129(96) -42(13)

80 12 3 6.1 15(4) -24(4)

The maximum, minimum and average number of steps n, necessary to “cross the Gribov
horizon” along the direction Ab

µ(x), as a function of the lattice size N . We also show the
ratio R[A] = (S′′′)2/(λ1 S′′′′) for the modified gauge fields τn−1Ab

µ(x) and τnAb
µ(x),

i.e. for the configurations immediately before and after crossing ∂Ω.
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Crossing the Horizon (II)

The case of a typical configuration.
R

i

Plot of the ratio R, as a func-
tion of the iteration step i,
for a configuration with lat-
tice volume 164.

i

Plot of λ2 (full circes), |E ′′′ |

(full squares) and E ′′′′ (full
triangles) as a function of
the iteration step i, for the
same configuration.
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Crossing the Horizon (III)

The case R ≈ 0 (configuration on ∂Ω ∩ ∂Λ ?).
R

i

Plot of the ratio R, as a func-
tion of the iteration step i,
for a configuration with lat-
tice volume 484.

i

Plot of λ2 (full circes), |E ′′′ |

(full squares) and E ′′′′ (full
triangles) as a function of
the iteration step i, for the
same configuration.
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New Inequalities

Using A′ = τ̃ A ≡ A(τn−1 + τn)/2 ∈ ∂Ω and ρ = 1/τ̃ < 1.

1/N

Plot of 1/G(pmin) (full triangles),
λ1 (full squares) and of the quantity
(1− ρ) p2min (full circles) as a func-
tion of the inverse lattice size 1/N .

1/N

Plot of h (empty circles), σ(pmin)

(full triangles), the quantity 1 −

λ1/p2min (full squares) and the up-
per bound ρ (full circles) as a func-
tion of the inverse lattice size 1/N .
(Note λ1 goes to zero as p2min.)
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New Inequalities

The new inequality λ1 [M[A] ] ≥ [1− ρ(A)] p2min becomes an

equality only when the eigenvectors corresponding to the

smallest nonzero eigenvalues of M[A] and −∂2 coincide. =⇒

The eigenvector ψmin is very different from the plane waves

corresponding to pmin.

Plot of G(pmin) (full trian-

gles), the lower bound (full

circles) and the upper bound

(full squares) as a function of

the inverse lattice size 1/N .
1/N

These results explain the non-enhancement of G(p) in the IR.
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Conclusions

Our new bounds suggest all non-perturbative features of a
minimal-Landau-gauge configuration A ∈ Ω to be related to its
normalized distance ρ from the “origin” A = 0 or, equivalently, to
its normalized distance 1− ρ from the boundary ∂Ω.

Most lattice configurations are very close (ρ[A] ≈ 1) to the first
Gribov horizon ∂Ω.

Our data suggest that configurations producing an
infrared-enhanced ghost propagator should almost saturate the
new bound, i.e. their eigenvector ψ1 should have a large projection
on at least one of the plane waves corresponding to p2min.

This would imply that nonperturbative effects, such as color
confinement, are driven by configurations whose FP matrix M is
“dominated” by an eigenvector ψ1 very similar to the corresponding
eigenvector of M = −∂µ∂

µ , i.e. to ψ1 of the free case!
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