

Faculty of Science Institute for Theoretical Physics

Coulomb Gauge on the lattice From Zero to Finite Temperature

29.07.2013, Hannes Vogt, Giuseppe Burgio, Markus Quandt, Hugo Reinhardt

Content

- Gluon propagator
 - in SU(3) and SU(4) at T = 0
 - at T > 0 on anisotropic lattices
- Ghost propagator at T > 0
- Coulomb potential
 - Effect of Gribov copies
 - Results at T > 0
- Summary and Outlook

The gluon propagator

$$D(|\boldsymbol{p}|, p_0) = \frac{1}{9V} \langle A_i^a(|\boldsymbol{p}|, p_0) A_i^a(-|\boldsymbol{p}|, -p_0) \rangle$$

- Static propagator shows scaling violations
 - *p*₀ dependence in the non-instantaneous propagator after residual gauge fixing
- Scaling violations resolved
 - in lattice Hamiltonian limit $\xi \to \infty$ (anisotropic lattices)
 - by taking the static propagator at fixed p_0

The gluon propagator

• Non-instantaneous bare propagator factorizes

$$D(|\boldsymbol{p}|, p_0) = f_{\beta}(|\boldsymbol{p}|)g_{\beta}(z), \quad z = rac{p_0}{|\boldsymbol{p}|}$$

• Identify $g_{\beta}(z)$ from fit of

$$g_eta(z) = rac{D(\left|oldsymbol{p}
ight|, oldsymbol{
ho}_0)}{D(\left|oldsymbol{p}
ight|, 0)}, \quad g(0) \equiv 1$$

• Integrate out the *z* dependence

$$D(|oldsymbol{p}|) = rac{1}{N_t}\sum_{oldsymbol{p}_0}|oldsymbol{p}|rac{D(|oldsymbol{p}|\,,oldsymbol{p}_0)}{g_eta(z)}$$

The gluon propagator at T=0

• In SU(2) on isotropic lattices: Gribov form

$$D(|oldsymbol{p}|) = rac{1}{\sqrt{\left|oldsymbol{p}
ight|^2 + rac{M^4}{\left|oldsymbol{p}
ight|^2}}}$$

• For SU(3) and SU(4) modify the mid-momentum region:

$$D(|oldsymbol{p}|) = rac{1}{\sqrt{\left|oldsymbol{p}
ight|^2 + \gamma M^2 + rac{M^4}{\left|oldsymbol{p}
ight|^2}}}$$

• On anisotropic lattices:

$$D(|\boldsymbol{p}|) = \frac{1}{\sqrt{|\boldsymbol{p}|^2 + \gamma M^2 + \alpha \frac{M^3}{|\boldsymbol{p}|} + \frac{M^4}{|\boldsymbol{p}|^2}}}$$

The gluon propagator at T=0

• In SU(2) on isotropic lattices: Gribov form

$$rac{D(|oldsymbol{p}|)}{|oldsymbol{p}|} = rac{1}{\sqrt{{|oldsymbol{p}|}^4 + M^4}}$$

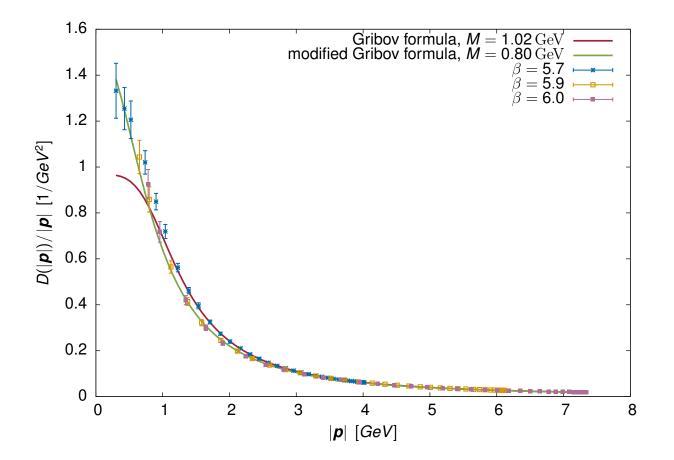
• For SU(3) and SU(4) modify the mid-momentum region:

$$rac{D(|oldsymbol{p}|)}{|oldsymbol{p}|} = rac{1}{\sqrt{|oldsymbol{p}|^4 + \gamma M^2 |oldsymbol{p}|^2 + M^4}}$$

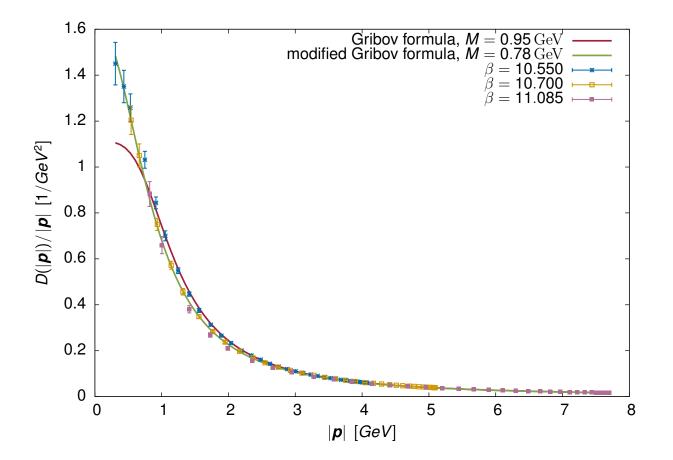
• On anisotropic lattices:

$$\frac{D(|\boldsymbol{p}|)}{|\boldsymbol{p}|} = \frac{1}{\sqrt{|\boldsymbol{p}|^4 + \gamma M^2 |\boldsymbol{p}|^2 + \alpha M^3 |\boldsymbol{p}| + M^4}}$$

SU(3) gluon propagator, $V = 24^4$



SU(4) gluon propagator, $V = 24^4$

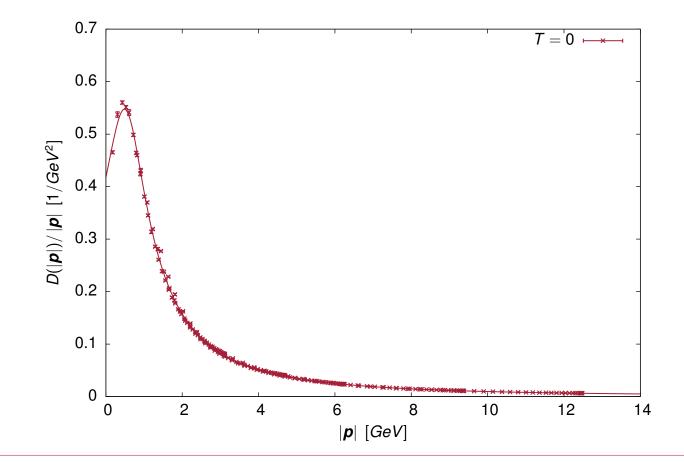


Finite Temperature & anisotropic lattices

- Temperature given by $T = \frac{1}{N_t a_t}$
- IR analysis on isotropic lattices limited to low temperature $(T < 1.5T_c)$
- Solution: anisotropic lattices $\xi = a_s/a_t$
 - up to $T = 6T_c$ at $\xi = 4$ possible
- Setup:
 - SU(2)
 - anisotropy $\xi = a_s/a_t = 4$
 - lattice volume $V = N_t \times 32^3$
 - 100 configurations
 - gauge fixing: Simulated annealing and Overrelaxation with varying number of copies

Anisotropic gluon propagator up to $\mathsf{T}=3\mathsf{T}_{\mathsf{c}}$

5 sets of configurations for each T ($\beta \in [2.25, 2.64]$)

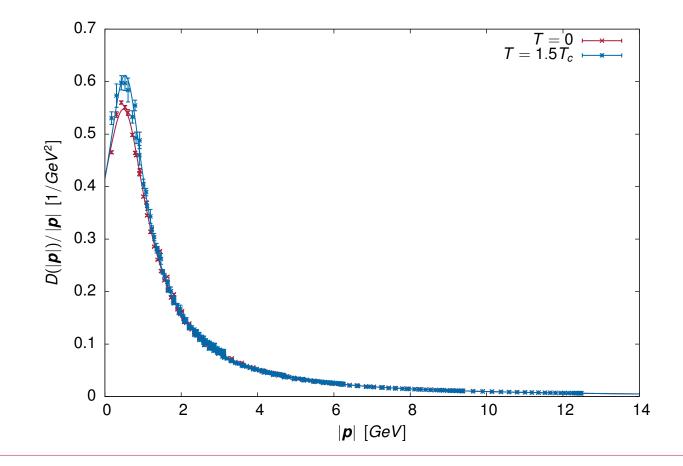


10 | Hannes Vogt - Coulomb Gauge: From Zero to Finite Temperature

© 2013 University of Tuebingen

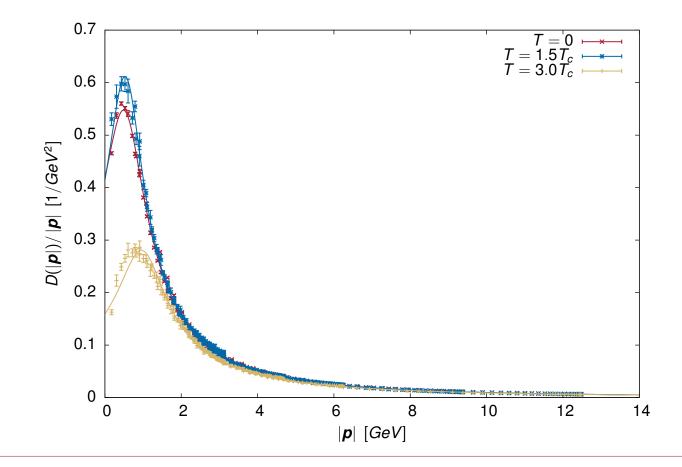
Anisotropic gluon propagator up to $\mathsf{T}=\mathsf{3}\mathsf{T}_{\mathsf{c}}$

5 sets of configurations for each T ($\beta \in [2.25, 2.64]$)



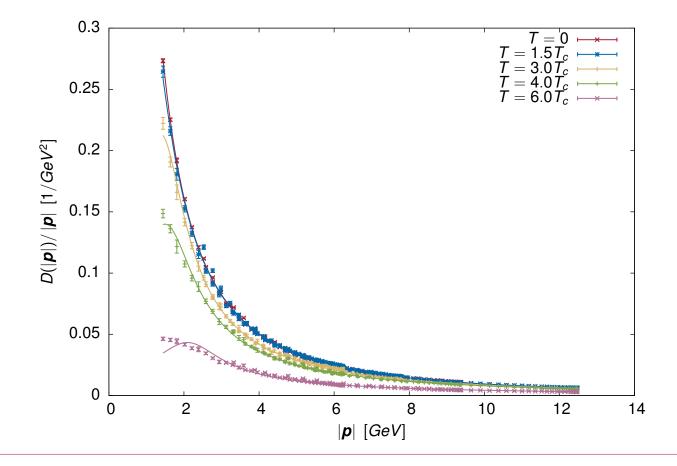
Anisotropic gluon propagator up to $\mathsf{T}=\mathsf{3}\mathsf{T}_{\mathsf{c}}$

5 sets of configurations for each T ($\beta \in [2.25, 2.64]$)



Anisotropic gluon propagator up to $\mathsf{T}=\mathsf{6T}_{\mathsf{c}}$

3 or 4 sets of configurations for each T ($\beta \in [2.49, 2.64]$)



11 | Hannes Vogt - Coulomb Gauge: From Zero to Finite Temperature

© 2013 University of Tuebingen

The ghost propagator

$$G(\boldsymbol{p}) = \frac{1}{3N_s} \left\langle \sum_{\boldsymbol{x}, \boldsymbol{y}} e^{i\boldsymbol{p}(\boldsymbol{x}-\boldsymbol{y})} \left[M^{-1} \right]^{aa}(\boldsymbol{x}, \boldsymbol{y}) \right\rangle$$

- ghost dressing function $d(|\boldsymbol{p}|) = |\boldsymbol{p}|^2 G(|\boldsymbol{p}|)$
- continuum results: IR power-law

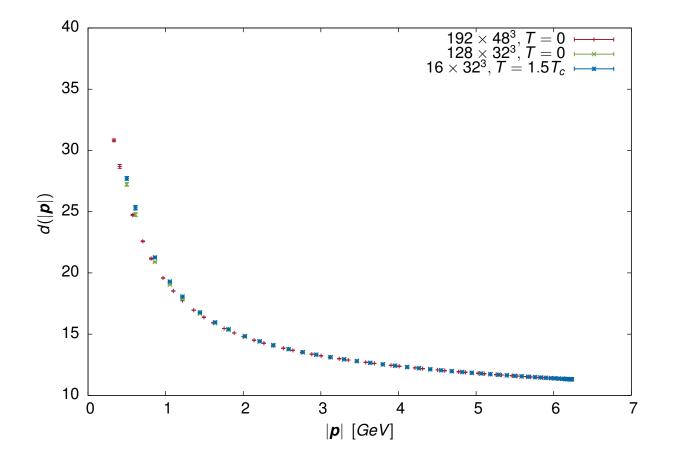
$$d(|oldsymbol{p}|) \sim rac{1}{|oldsymbol{p}|^\kappa}$$

• asymptotic freedom: UV power-law with log corrections:

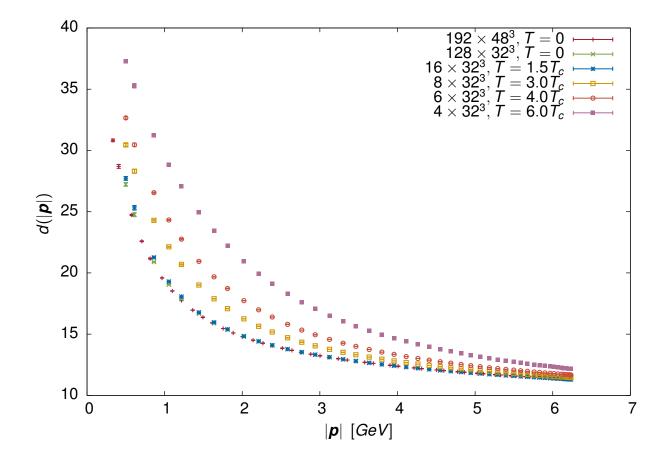
$$d(|oldsymbol{p}|) \sim rac{1}{\log^{\gamma} rac{|oldsymbol{p}|}{m}}$$

continuum sum rules violated

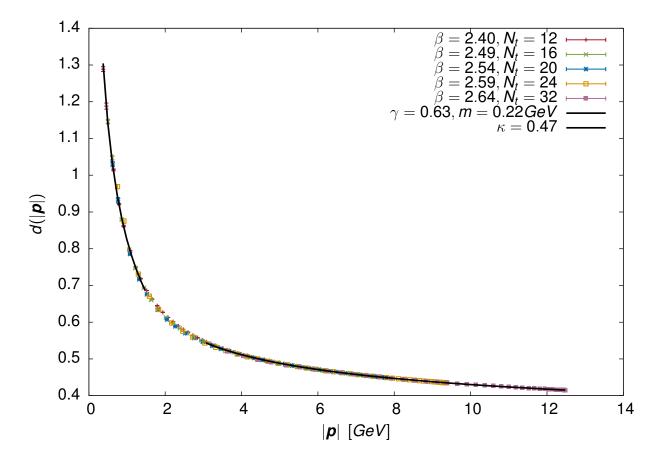
Ghost dressing function at fixed $\beta = 2.5$ and ξ_0



Ghost dressing function at fixed $\beta = 2.5$ and ξ_0

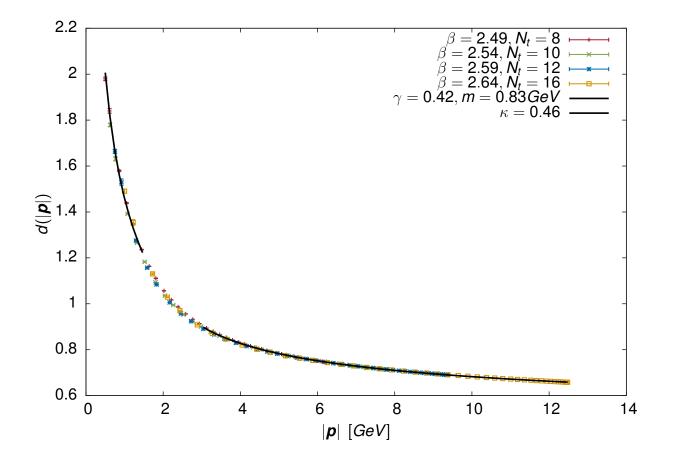


Ghost dressing function at $T = 1.5T_c$



UV: equally well fitted with fixed $\gamma = 0.5$ (m = 0.44 GeV)

Ghost dressing function at $T=3.0T_{c}$



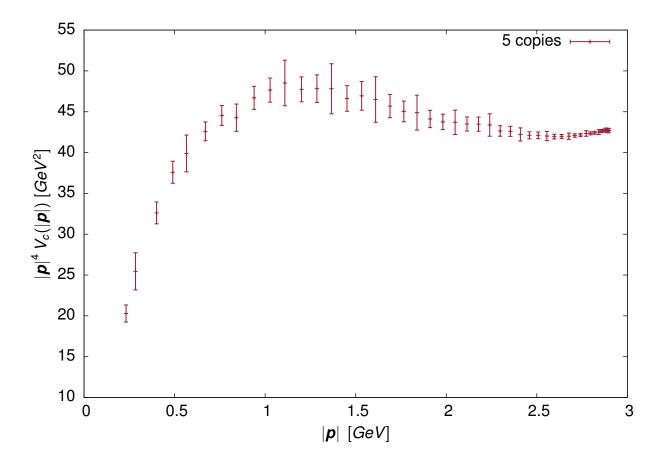
Coulomb Potential

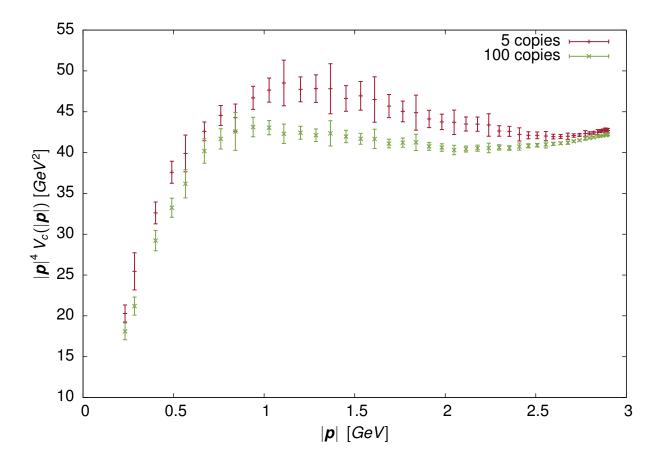
$$V_{c}(\boldsymbol{p}) = \frac{1}{3N_{s}} \left\langle \sum_{\boldsymbol{x},\boldsymbol{y}} e^{i\boldsymbol{p}(\boldsymbol{x}-\boldsymbol{y})} \left[M^{-1}(-\Delta)M^{-1} \right]^{aa}(\boldsymbol{x},\boldsymbol{y}) \right\rangle$$

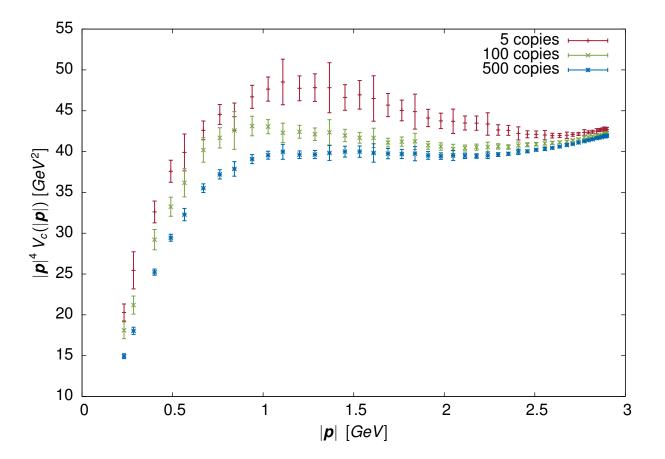
 $V_c(|\boldsymbol{p}|) \sim |\boldsymbol{p}|^4$ at $|\boldsymbol{p}| \to 0 \iff V_c(r) \sim \sigma_c r$ at $r \to \infty$

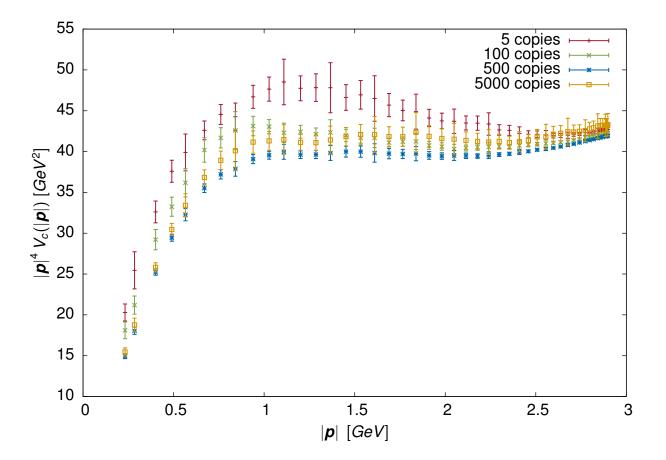
- Problems:
 - strong Gribov copy effects
 - Conjugate Gradient inversion is costly
 - extrapolation to the string tension based on few datapoints

$$\lim_{|\boldsymbol{p}|\to 0} V_c(|\boldsymbol{p}|) = 8\pi\sigma_c$$



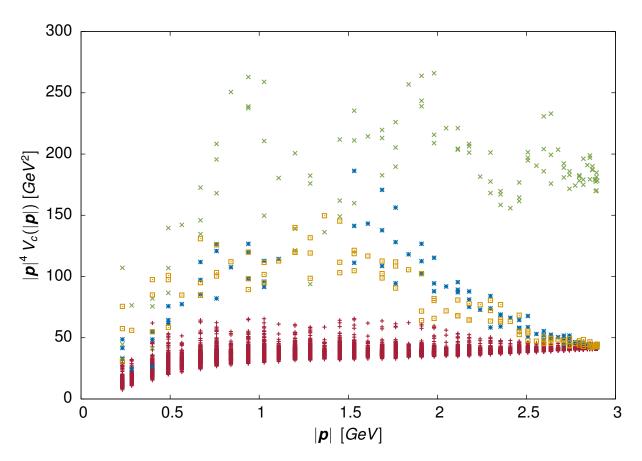






Gribov problem

raw data, configurations with highest contribution separated



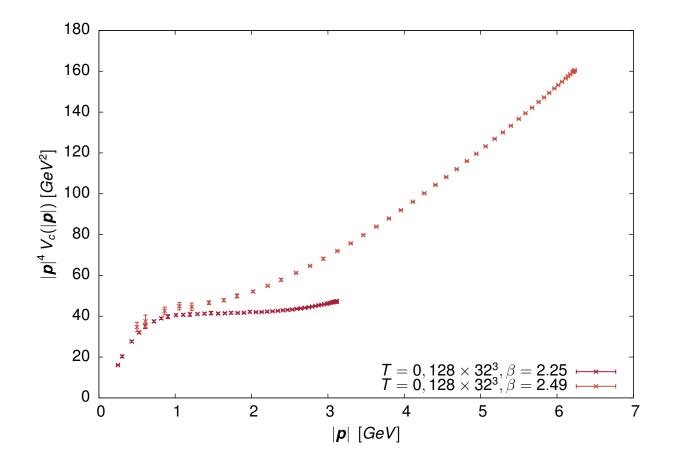
Remarks on gauge fixing and the Coulomb potential

Compare the functional value $F^{g}[U]$ to $V_{c}(\mathbf{p} = (1, 1, 1))$ at fixed timeslice in 10,000 gauge copies

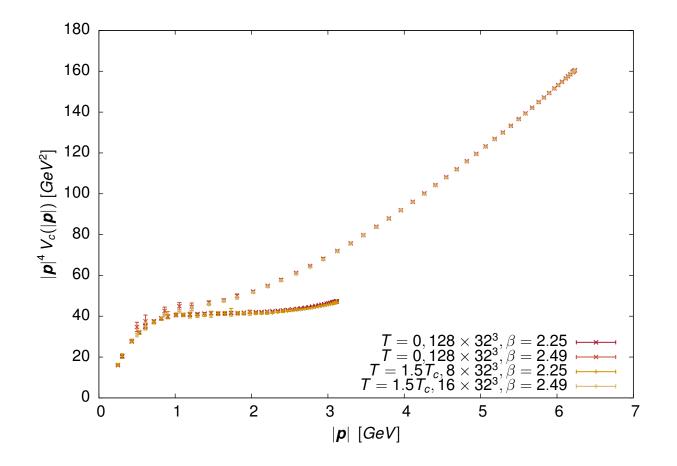
- extreme values of V_c not correlated to $F^g[U]$
- in average V_c gets smaller at increasing $F^g[U]$
- the highest value of $F^{g}[U]$ is found in more than 10 copies
- exceptional configurations are found in \approx 1% of the copies

Want to try yourself? http://www.culgt.com

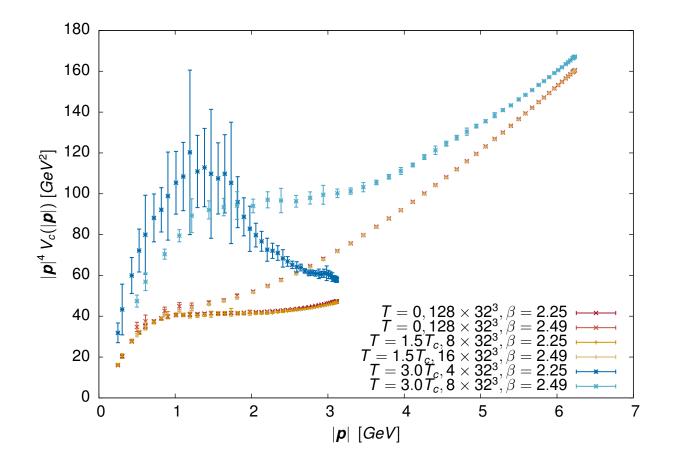
Coulomb potential at $T \ge 0$



Coulomb potential at $T \ge 0$



Coulomb potential at $T \ge 0$



Summary

- The static gluon propagator obtained by integrating out the *p*₀ dependence is multiplicatively renormalizable
- At finite temperature:
 - No quantity is sensitive to deconfinement up to $1.5T_c$
 - Differences set in at larger T
 - The gluon propagator is further IR-suppressed at higher temperature
- Extrapolation of σ_c from V_c has large uncertainties:
 - Large Gribov copy effect
 - Large outliers need much higher statistics
 - UV scaling is defective: go to weak coupling limit

Outlook

- Control the exceptional configuration in ghost and V_c inversion \rightarrow deflation techniques
- T-dependence of V_c calculated from the temporal gluon propagator $\langle A_0 A_0 \rangle$ or partial Polyakov lines $[\log \langle U_0 U_0^{\dagger} \rangle]$

Thank you.

Contact:

Faculty of Science Institute for Theoretical Physics Auf der Morgenstelle 14 72076 Tübingen

hannes.vogt@uni-tuebingen.de

23 | Hannes Vogt - Coulomb Gauge: From Zero to Finite Temperature

© 2013 University of Tuebingen