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Correlation functions of atomic nuclei

The correlation function of a nucleus with Np protons and Nn neutrons is
defined as

CNp ,Nn (~x , t) =

〈 Np∏
i=1

Pαi (~x , t)

Nn∏
j=1

Nαj (~x , t)

Np∏
k=1

Pαk (~0, 0)

Nn∏
l=1

Nαl (~0, 0)

〉
,

Pα = εabcua
α(ub

β(Cγ5)βγd
c
γ) and Nα = εabcda

α(ub
β(Cγ5)βγd

c
γ).

In the last talk by Jana Günther a method was introduced to construct
the correlation function recursively.
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The ingredients for the recursive algorithm
Multi-baryon correlation functions can be written as

C (t) = f q1,q2,q3

B1
. . . f q1,q2,q3

BN︸ ︷︷ ︸
F (N)

·
∑
σ∈Σ

GB1 . . .GBN sgn(σ)︸ ︷︷ ︸
L(N)

The objects in this formula have the following meaning:

I f q1,q2,q3

Bi
: Block of three quark propagators contracted at the sink to

form a baryon.

I GBi : The spinor- and color-structure of the baryons at the source.

I F : The outer product of the f q1,q2,q3

Bi
.

I L: The list of contributing components of F .

Both L and the antisymmerized version F− of F can be constructed
separately via a recursion:

L(n+1) = L(n) • GBn+1 F
(n+1)
− = F

(n)
− • f

q1,q2,q3

Bn+1
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More quark sources
Projection to spin states

Complicated multi-baron-systems

I The simplest form of the recursive algorithm can deal only with
special cases, for which

I all quarks are from a single spatial source.
I the total number of quarks of each flavor does not exceeds 12.

I Many interesting systems do not fall into this class.

I All this restrictions can be circumvented.
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More quark sources

Up to now the objects f q1,q2,q3

B (t, δ, ξ(q1), ξ(q2), ξ(q3)) and
GB(α, ξ(q1), ξ(q2), ξ(q3)) do not dependent of the quark sources and sinks.

timeslice

spinor-index
color-spinor-indices

for "internal" contractions

spinor-index
color-spinor-indices

for "internal" contractions
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More quark sources

To allow for several quark sources, the following must be changed:

1. The contractions between the objects f and G must allow for quark
propagation from every baryon at the source to every baryon at the
sink.

2. f and G must explicitly depend on the quark source.

The first condition can be met as follows:

I The indices ξ are promoted to color-spinor-source/-sink-indices:
ξ = source/sink(ξ)⊗ spinor(ξ)⊗ color(ξ).

I ξ can take 12Nsource values instead of 12 values.
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Projection to spin-states

I The correlation function [C (t)]α1···αn

δ1···δn has a large number of spinor
component.

I In practice it is not necessary to calculate the full tensor, but only
the projections of the form

CM(t) =
∑
αi ,δi

[C (t)]α1···αn

δ1···δn M
α1···αn

δ1···δn .

I This can be calculated efficiently by modifying the list L:

(nBa ! nBb
! . . .)2 LM(A(Ba){δ},A(Bb){δ}, . . . ,A(u){ξ},A(d){ξ},A(s){ξ})

=
∑

A(Ba){α},A(Bb ){α},...

L(N)(A(Ba){α},A(Bb){α}, . . . ,A(u){ξ},A(d){ξ},A(s){ξ})

×M−(A(Ba){α},A(Bb){α}, . . . ,A(Ba){δ},A(Bb){δ}, . . .)
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Projection to spin-states

C (t) = f q1,q2,q3

B1
. . . f q1,q2,q3

BN︸ ︷︷ ︸
F (N)

·
∑
σ∈Σ

GB1 . . .GBN sgn(σ)︸ ︷︷ ︸
L(N)
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Projection to spin-states
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More quark sources
Projection to spin states

Projection to spin-states
This approach has two advantages:

I One does not have to store the complete correlation function at any
time.

I The computation of some intermediate components may not be
necessary because the contraction of M with L cancels its
contribution.
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Strategy of computation
Comparison with näıve method

Atomic Nuclei

I QCD as the theory of strong interaction should predict the masses
and properties of atomic nuclei.

I One important application of the presented algorithm is the
calculation of correlation functions of atomic nuclei.

I This special case is to be presented in detail here.
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Nucleon operators

For creating and annihilating of nucleons the following interpolating
operators are used commonly:

Pα = εabc (Γ1)αβuβ;a [uγ;b(Γ2)γδdδ;c ],

Nα = εabc (Γ1)αβdβ;a [uγ;b(Γ2)γδdδ;c ]

P
α

= εabc (Γ1)αβu
β;a [uγ;b(Γ2)γδd

δ;c
],

N
α

= εabc (Γ1)αβd
β;a

[uγ;b(Γ2)γδd
δ;c

]

There are two important choices of the Γi matrices that will be discussed
here:

1. The fully relativistic choice Γ1 = 1 and Γ2 = Cγ5.

2. The non relativistic case Γ1 = Pnr and Γ2 = Cγ5Pnr with
Pnr = 1+γ4

2 .
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Recursive relations for nuclei

A nucleus can be defined by the number of protons NP and the number
of neutrons NN . This yields a two dimensional recursive scheme:

L(nP+1,nN ) = L(nP ,nN ) • GP , (a)

L(nP ,nN+1) = L(nP ,nN ) • GN , (b)

F
(nP+1,nN )
− = F

(nP ,nN )
− • f u,u,dP , (c)

F
(nP ,nN+1)
− = F

(nP ,nN )
− • f d,d,uN (d)

0 1 2 3 4

0

1

2

3

4

(a)
(c)

(b) (d)

red: Recursion for the list L.
blue: Recursion for the tensor F−.
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Recursive relations for nuclei
How many components can F− have for a given nucleus?

P(nP , nN) = C (nP ,D − nP)C (nN ,D − nN)

C (2nP + nN , 3D − 2nP − nN)C (nP + 2nN , 3D − nP − 2nN),

C(n1, n2, · · · ) = (n1+n2+··· )!
n1!n2!··· , D =̂ effective number of spinor components per

quark

I This is the maximal number
permitted by the antisymmetry
structure.

I In practice only a fraction of
this number is required.
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Recursive relations for nuclei

The actual effort to calculate a given F− depends on the chosen path.

The red path is less efficient
then the green one.

In general path which add
first all baryons of one type
and then the baryons of the
other type are advantageous.
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Recursive calculation of several nuclei

If one wants to calculate the correlation function of more then one nuclei
it can be advantageous to combine the recursive operations:

0 1 2 3 4

0

1

2

3

4

10 % speedup
compared with separate

calculation

0 1 2 3 4

0

1

2

3

4

slower than separate
calculation

0 1 2 3 4

0

1

2

3

4

47 % speedup
compared with separate

calculation
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Comparison with näıve method

Relativistic Operators, 1 Quark source:

NP NN No. of op. Näıve No. of op. η

3He 2 1 19241280 5.5× 1011 2.9× 104

4He 2 2 531321120 5.7× 1016 1.1× 108

6Li 3 3 2905079520 4.9× 1027 1.7× 1018

7Li 3 4 404946240 3.0× 1033 7.5× 1024

(8Be) 4 4 448496928 2.8× 1039 6.2× 1030
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Comparing with unified contraction algorithm

Relativistic Operators, 1 Quark source:

NP NN η

3He 2 1 3.7

4He 2 2 41

6Li 3 3 17500

7Li 3 4 566000

(8Be) 4 4 1.6× 107
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Conclusion

I An algorithm was presented that can efficiently calculate the
correlation function of multi-baryon-systems.

I Several quark sources can be used.

I The projection to certain spin-states can reduce the computational
effort.

I Baryons blocks can be projected to definite momentum prior to the
construction of the correlation functions.

I Atomic nuclei as a special case where discussed in detail.
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Thank you!
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More quark sources

The usage of several quark sources can be implemented via

G̃B(χ; ξ(q1), ξ(q2), ξ(q3)) = δs(χ),s(ξ(q1))δs(χ),s(ξ(q2))δs(χ),s(ξ(q3))

· GB(α(χ);κ(ξ(q1)), κ(ξ(q2)), κ(ξ(q3))),

f̃ q1,q2,q3

B (t, ψ; ξ(q1), ξ(q2), ξ(q3)) =
∑
~x

ss(ψ)(~x)
〈
Bα(ψ)(~x , t) · qξ

(q1)

1 qξ
(q2)

2 qξ
(q3)

3

〉
where

I s(ξ) =̂ source-/sink-part of ξ.

I α(ξ) =̂ spinor-part of ξ.

I κ(ξ) =̂ spinor-color-part of ξ.

The recursive algorithm can be applied in the same way then before the
introduction off additional quark sources.
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