Lattice computation of the 2nd order transport coefficient κ in pure Yang-Mills theory

Christian Schäfer

in collaboration with Owe Philipsen

Institut für Theoretische Physik Goethe-Universität Frankfurt

29th July 2013

1 The Quark Gluon plasma and transport coefficients

2 Computation of 2nd order transport coefficient κ in Lattice QCD

- Connection of κ to Lattice QCD
- \blacksquare Issues concerning lattice computation of κ
- κ from lattice perturbation theory
- \blacksquare Temperature dependence of κ

3 Summary

Quark Gluon plasma (QGP) as an almost ideal fluid

- Measurement of elliptical flow \textit{v}_2 in heavy ion collisions at RHIC or LHC

- QGP behaves like an almost ideal fluid Romatschke: arXiv:0706.1522
- Description via relativistic hydrodynamics using transport coefficients as underlying parameters

Relativistic hydrodynamics and transport coefficient κ

• Energy-momentum-tensor acts as the central quantity in hydrodynamics

$$T^{\mu\nu} = T^{\mu\nu}_0 + \Pi^{\mu\nu}$$
$$\Pi^{\mu\nu} = \pi^{\mu\nu} + \Delta^{\mu\nu}\Pi$$

- Traceless part $\pi^{\mu\nu}$ can be expanded in gradients
- Second order gradient expansion in $\mathcal{N}=4$ SYM theory $_{\text{Baier, Romatschke,}}$

Son, Starinets & Stephanov: arXiv:0712.2451

$$\pi^{\mu\nu} = \ldots + \kappa \left(R^{\langle \mu\nu\rangle} - 2u_{\alpha}u_{\beta}R^{\alpha\langle \mu\nu\rangle\beta} \right) + \ldots$$

- Includes transport coefficients such as shear viscosity η and κ

Connection of κ to Lattice QCD (LQCD)

• Response of fluid to a metric perturbation in linear response theory

Romatschke, Son: arXiv:0903.3946

$$G^{
m R}(\omega=0,ec{q})=G(0)+rac{\kappa}{2}|ec{q}|^2+\mathcal{O}(|ec{q}|^4)$$

• *G*^R: Retarded correlator of the energy-momentum tensor

$$G^{\mathrm{R}}(x,y) = \langle T_{12}(x)T_{12}(y) \rangle$$

Connection of κ to Lattice QCD (LQCD)

• Response of fluid to a metric perturbation in linear response theory

Romatschke, Son: arXiv:0903.3946

$$G^{
m R}(\omega=0,ec{q})=G(0)+rac{\kappa}{2}|ec{q}|^2+\mathcal{O}(|ec{q}|^4)$$

• G^{R} : Retarded correlator of the energy-momentum tensor

$$G^{\mathrm{R}}(x,y) = \langle T_{12}(x)T_{12}(y) \rangle$$

• Retarded and Euclidean correlator coincide for $\omega = 0$ up to a contact term B

$$G^{
m R}(\omega,ec{q})\,=\,G^{
m E}(ec{q},\omega+{
m i}\epsilon)+B$$

• Operator product expansion: *B* is momentum independent Kohno, Asakawa & Kitazawa: 1112.1508

6 / 20

Connection of κ to LQCD

• Connection between κ and Euclidean correlator ${\cal G}^{
m E}$

$$G^{E}(\omega=0,\vec{q})=\mathrm{const.}+\frac{\kappa}{2}|\vec{q}|^{2}+\ldots$$

- $G^{\rm E}$ can be extracted from LQCD $\Rightarrow \kappa$ is directly accessible via LQCD
- In contrast to shear viscosity η , which requires further methods like the Maximum Entropy Method (MEM)

Connection of κ to LQCD

• Connection between κ and Euclidean correlator ${\cal G}^{
m E}$

$$G^{E}(\omega=0,\vec{q})=\mathrm{const.}+\frac{\kappa}{2}|\vec{q}|^{2}+\ldots$$

- $G^{\rm E}$ can be extracted from LQCD $\Rightarrow \kappa$ is directly accessible via LQCD
- In contrast to shear viscosity η , which requires further methods like the Maximum Entropy Method (MEM)
- Computation procedure for κ :

Framework for pure gauge theory

- Discretisation of spacetime by an $L^3 \times N_{\tau}$ hypercubic lattice with anisotropy $\xi = a_{\sigma}/a_{\tau}$
- Discrete momenta

$$q_i=\frac{2\pi}{La_{\sigma}}n_i,\quad n_i=0,\ldots,L-1$$

• Wilson action for an anisotropic lattice Namekawa et. al.: arXiv:0105012

$$S[U] = rac{eta}{N_{
m c}} \operatorname{Re} \operatorname{Tr} \left[rac{1}{\xi_0} \sum_{x,i,j} (1 - U_{ij}(x)) + \xi_0 \sum_{x,i} (1 - U_{i0}(x))
ight]$$

- Bare anisotropy $\xi_0(eta)$ and temperature $\mathcal{T}(eta) = [a_ au(eta) \mathsf{N}_ au]^{-1}$
- Clover discretisation of energy-momentum tensor $T_{\mu
 u}$ Meyer: arXiv:0904.1806

Issues concerning lattice computation of κ (i)

Momentum expansion of $G^{\rm E}$

• Momentum expansion of $G^{\mathrm{E}}(q)$ only valid for small momenta

$$\frac{q_i}{T} = \frac{2\pi N_\tau}{\xi L} n_i < 1$$

- Computation requires large spatial lattice extents L
- Computation benefits from anisotropy $\xi>1$

Issues concerning lattice computation of κ (i)

Momentum expansion of $G^{\rm E}$

• Momentum expansion of $G^{\mathrm{E}}(q)$ only valid for small momenta

$$\frac{q_i}{T} = \frac{2\pi N_\tau}{\xi L} n_i < 1$$

- Computation requires large spatial lattice extents L
- Computation benefits from anisotropy $\xi>1$

Additive renormalisation

• Subtraction of vacuum part

$$\langle T_{12}T_{12}\rangle_0 = \langle T_{12}T_{12}\rangle_T - \langle T_{12}T_{12}\rangle_{T=0}$$

• Cheaper: Replace T = 0 with some $T < T_c$

Issues concerning lattice computation of κ (ii)

Multiplicative renormalisation

- Required due to reduced translational symmetry on the lattice
- Utilise cubic symmetry

$$\langle T_{12}(x) T_{12}(y) \rangle = \frac{1}{2} \Big[\langle T_{11}(x) T_{11}(y) \rangle - \langle T_{11}(x) T_{22}(y) \rangle \Big]$$

• Match energy-momentum tensor against pressure *p* Borsanyi, Endrodi, Fodor,

Katz & Szabo: arXiv:1204.6184

$$\langle T_{ii}^{\text{renorm}} \rangle = Z(\beta,\xi) \langle T_{ii} \rangle = p_{\text{cont}}$$

- Anisotropic lattice requires two renormalisation constants $Z^{\sigma}(\beta,\xi)$ and $Z^{\tau}(\beta,\xi)$
- Compute ratio Z^{τ}/Z^{σ} numerically by renormalisation group invariant quantities Meyer: arXiv:0809.5202

Multiplicative renormalisation

• Computation of correlator G^E in free LPT (g = 0)

$$\begin{aligned} \frac{G^{E}(q)}{T^{4}} &= (N_{\rm c}^{2} - 1) \left\{ \frac{\pi^{4}}{N_{\tau}^{2}} \left(\frac{2\xi^{2}}{945} + \frac{4}{189} \right) \right. \\ &\left. + \frac{q^{2}}{T^{2}} \left[\frac{1}{36} + \frac{\pi^{2}}{N_{\tau}^{2}} \left(-\frac{\xi^{2}}{240} + \frac{49}{2160} \right) \right] \right\} \end{aligned}$$

• Reproduce weak coupling regime in LQCD by increasing temperature

Comparison of LPT and simulation

Temperature dependence of κ

- Description of QGP in relativistic hydrodynamics with transport coefficients as underlying parameters
- 2nd order transport coefficient κ directly accessible from LQCD

$$G^{E}(\omega=0,\vec{q})=\frac{\kappa}{2}|\vec{q}|^{2}+\mathrm{const.}$$

- Even pure gauge lattice simulations expensive
- First determination of κ from LQCD and reproduction of LPT result
- First result for temperature dependence of $\boldsymbol{\kappa}$

Appendix

Simulation parameters

eta	7.1	7.1	6.68	6.14
$N_{ au}$	6	8	6	6
N_{σ}	120	120	120	120
$N_{ au}^{ m vac}$	72	72	42	24
ξ	2	2	2	2
a_{σ} [fm]	0.026	0.026	0.044	0.094
$T/T_{\rm c}$	9.4	7.1	5.6	2.6
$T^{ m vac}/T_{ m c}$	0.8	0.8	0.8	0.7

$T/T_{\rm c}$	9.4	7.1	5.6	2.6
a_{σ} [fm]	0.026	0.026	0.044	0.094
κ/T^2	0.40(26)	0.41(84)	0.39(30)	0.28(20)