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Quark Gluon plasma (QGP) as an almost ideal fluid

e Measurement of elliptical flow v» in heavy ion collisions at RHIC or

LHC

o QGP behaveS I|ke an a|mOSt |dea| f|UId Romatschke: arXiv:0706.1522
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e Description via relativistic hydrodynamics using transport coefficients

as underlying parameters
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Relativistic hydrodynamics and transport coefficient x

Energy-momentum-tensor acts as the central quantity in
hydrodynamics

TH= T4 + 11"
"= 7 + AP T

Traceless part 7#¥ can be expanded in gradients

Second order gradient expansion in AN/ =4 SYM theory sicr romatschie,

Son, Starinets & Stephanov: arXiv:0712.2451
= . +k (R<’W> — 2uau5Ra<”’”>ﬂ> +...

Includes transport coefficients such as shear viscosity 17 and &
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Connection of x to Lattice QCD (LQCD)

e Response of fluid to a metric perturbation in linear response theory

Romatschke, Son: arXiv:0903.3946
- K -
G'(w =0,9) = 6(0) + 5|4 + O(I4]")
e GR: Retarded correlator of the energy-momentum tensor

G (x,y) = (T12(x) Ti2(y))

5/20



Connection of x to Lattice QCD (LQCD)

Response of fluid to a metric perturbation in linear response theory

Romatschke, Son: arXiv:0903.3946
- K -
G'(w =0,9) = 6(0) + 5|4 + O(I4]")
GR: Retarded correlator of the energy-momentum tensor

G"(x,y) = (T12(x) Taa(y))

Retarded and Euclidean correlator coincide for w = 0 up to a contact

term B

Operator product expansion: B is momentum independent kohno, Asakawa
& Kitazawa: 1112.1508
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Connection of kK to LQCD

o Connection between x and Euclidean correlator GE

e GP can be extracted from LQCD
= kK is directly accessible via LQCD

e In contrast to shear viscosity 1, which requires further methods like
the Maximum Entropy Method (MEM)
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Connection of kK to LQCD

Connection between k and Euclidean correlator GE

GF can be extracted from LQCD
= kK is directly accessible via LQCD

e In contrast to shear viscosity 1, which requires further methods like
the Maximum Entropy Method (MEM)

e Computation procedure for k:
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Framework for pure gauge theory

e Discretisation of spacetime by an

L3 x N, hypercubic lattice with ar G )
anisotropy £ = a/a,
e Discrete momenta Un(x)
21
g=-—nj, n=0,....,L-1 as = Ear
La,

e Wilson action for an anisotropic lattice namekawa et ol anxivoi05012

SIUI = - ReTr | & 3 (1 = Ujx)) + 0 (1~ Un(x)

€o x,ij x,i

o Bare anisotropy &() and temperature T(83) = [a-(8)N,] "

e Clover discretisation of energy-momentum tensor T, weyer: arxiv0004.1506
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Issues concerning lattice computation of x (i)

Momentum expansion of G

e Momentum expansion of G¥(q) only valid for small momenta

o Computation requires large spatial lattice extents L

o Computation benefits from anisotropy £ > 1
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Issues concerning lattice computation of x (i)

Momentum expansion of G

e Momentum expansion of G¥(q) only valid for small momenta

o Computation requires large spatial lattice extents L

o Computation benefits from anisotropy £ > 1

Additive renormalisation

e Subtraction of vacuum part
(TioT12)g = (T2 T12) 1 — (T2 T12) 17—

e Cheaper: Replace T =0 with some T < T,
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Issues concerning lattice computation of x (ii)

Multiplicative renormalisation
e Required due to reduced translational symmetry on the lattice

e Utilise cubic symmetry

(TiaG) Taaly) = 5 [{Ti () Tua()) — (Ta () Tl

e Match energy-momentum tensor against pressure p Eorsanyi, Endrodi, Fodor,

Katz & Szabo: arXiv:1204.6184

(Ti™™) = Z(8,€) (Tii) = Peont

e Anisotropic lattice requires two renormalisation constants Z7(/3, &)
and Z7(3,¢)

o Compute ratio Z7/Z° numerically by renormalisation group invariant
quant|t|es Meyer: arXiv:0809.5202
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Multiplicative renormalisation
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Kk in lattice perturbation theory (LPT)

o Computation of correlator GE in free LPT (g = 0)

GE(q) 2 2¢2 4
7a = (e —1) N2 %*@

(1 2 @ 49
36 ' N2\ 240 ' 2160

q
e Reproduce weak coupling regime in LQCD by increasing temperature

2
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Comparison of LPT and simulation
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Temperature dependence of
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Description of QGP in relativistic hydrodynamics with transport
coefficients as underlying parameters

2nd order transport coefficient x directly accessible from LQCD
E - K\ o2
G- (w=0,g9) = §|q\ + const.

e Even pure gauge lattice simulations expensive

First determination of x from LQCD and reproduction of LPT result

First result for temperature dependence of «
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Appendix
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Simulation parameters

7.1 7.1 6.68 6.14
6 8 6 6
120 120 120 120
72 72 42 24
2 2 2 2

0.026 0.026 0.044 0.094
9.4 7.1 5.6 2.6
0.8 0.8 0.8 0.7
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Simulation results &

T/T, 9.4 7.1 5.6 2.6
a [fm] | 0026 0026 0044  0.094

x/T2 | 0.40(26) 0.41(84) 0.39(30) 0.28(20)
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