Lattice QCD at Finite Isospin Chemical Potential

Kobayashi-Maskawa Institute for the Origin of Particles and the Universe

Kobayashi-Maskawa Institute, Department of Physics, Nagoya University Chiho NONAKA In Collaboration with Masaki KONDO (Nagoya U.)

July 29, 2013@Lattice2013, Mainz, Germany

Introduction

- Finite density lattice QCD sign problem
- high *T*, low μ : reweighting method, Taylor expansion... QCD critical point, freezeout parameters, fluctuations...

Finite Isospin Chemical Potential

• Core of neutron stars ?

$$\mu_u = \mu + \mu_I$$
$$\mu_d = \mu - \mu_I$$

 $\begin{array}{l} \mu_{\rm l} > 0: \mu_{\rm u} > \mu_{\rm d}, \mbox{ positive charge} \\ u_{\rm l} < 0: \mu_{\rm u} < \mu_{\rm d}, \mbox{ negative charge} \end{array}$

strangeness: kaon condensation? hyperons?

- Insight of finite chemical potential
 - Phase diagram as a function of *T*, μ and $\mu_{\rm I}$

Pion Condensation on the lattice

K M i I M Z K M I C. NONAKA

Introduction of μ_{I}

• 2 flavor fermion action (Wilson fermion)

$$\begin{split} S_F &= \bar{\Psi}[\gamma_{\mu}D_{\mu} + m_q + \mu\gamma_4\frac{\tau^3}{2} + i\lambda\gamma_5\frac{\tau^2}{2}]\Psi \\ &= \bar{\Psi} \begin{pmatrix} D(\mu) & \lambda\gamma_5 \\ -\lambda\gamma_5 & D(-\mu) \end{pmatrix}\Psi \qquad D(\mu) = \gamma_{\mu}D_{\mu} + m_q + \frac{\mu}{2}\gamma_4 \\ &= \bar{\Psi}D(U)\Psi \end{split}$$

 au^2, au^3 : Pauli matrix

- $\bar{\Psi}[i\lambda\gamma_5\frac{\tau^2}{2}]\Psi$
 - $-\lambda$: explicit I₃ breaking parameter
 - positivity of det D(U) sign problem at finite μ det $D(U) = \det \left[D^{\dagger}(\mu)D(\mu) + \lambda^2 \right]$

Hybrid Monte Carlo method

- observables: $\lambda \implies 0$

Hybrid Monte Carlo

Hybrid Monte Carlo method

Partition function

$$Z = \int D\phi^* D\phi DU e^{-S_G + S_F} \qquad S_F = \phi^{\dagger} D^{-1} (D^{\dagger})^{-1} \phi$$

$$\phi : \text{pseudo fermion field}$$

$$P : \text{conjugate momentum of U}$$

$$Z = \int DP DU \exp\left\{-\left(\frac{1}{2}P^2 + S_G + S_F\right)\right\}$$

Hamiltonian: H

Hamilton equation

$$\begin{cases} \frac{dA_l}{dt} = \frac{\partial H}{\partial P_l} \\ \frac{dP_l}{dt} = -\frac{\partial H}{\partial A_l} \end{cases} \Rightarrow \begin{cases} \frac{dU}{dt} = iPU \\ \frac{dP_l}{dt} = -\frac{\partial S_G}{\partial A_l} - \frac{\partial S_F}{\partial A_l} \end{cases}$$

 $\frac{\partial S_F}{\partial A_l} = -\eta^{\dagger} \frac{\partial D}{\partial A_l} X - X^{\dagger} \frac{\partial D^{\dagger}}{\partial A_l} \eta$ where $\eta = (D^{\dagger})^{-1} \phi, X = D^{-1} \eta$ Inverse of fermion matrix

HMC with μ_{I}

Fermion matrix: $D = D^{\dagger}(\mu)D(\mu) + \lambda^2$ $\int \frac{dU}{dt} = iPU \qquad \qquad \frac{\partial S_F}{\partial A_l} = -\eta^{\dagger} \frac{\partial D}{\partial A_l} X - X^{\dagger} \frac{\partial D^{\dagger}}{\partial A_l} \eta$ $\frac{dP_l}{dt} = -\frac{\partial S_G}{\partial A_l} - \frac{\partial S_F}{\partial A_l} \qquad \qquad \text{where}$ $\eta = (D^{\dagger})^{-1} \phi \, X = D^{-1} \eta$ $\frac{\partial S_F}{\partial A} = -\frac{1}{2} \Big[-i\kappa_{\lambda}^+ T \Big\{ \Big(r - \gamma_{\lambda} \Big) U_{\lambda}(x) Q(x, x + \lambda) \Big\} + i\kappa_{\lambda}^- T \Big\{ Q(x + \lambda, x) \Big(r + \gamma_{\lambda} \Big) U_{\lambda}^{\dagger}(x) \Big\}$ $+i\kappa_{\lambda}^{+}T\left\{Q(x+\lambda,x)(r-\gamma_{\lambda})U_{\lambda}^{\dagger}(x)\right\}-i\kappa_{\lambda}^{-}T\left\{(r+\gamma_{\lambda})U_{\lambda}(x)Q(x,x+\lambda)\right\}$ $-i\kappa_{\lambda}^{+}\kappa_{\nu}^{+}T\left\{\left(r-\gamma_{\nu}\right)U_{\nu}(x)Q(x+\lambda,x+\nu)\left(r-\gamma_{\lambda}\right)U_{\lambda}^{\dagger}(x)\right\}$ $+i\kappa_{\mu}^{+}\kappa_{\lambda}^{+}T\{(r-\gamma_{\lambda})U_{\lambda}(x)Q(x+\mu,x+\lambda)(r-\gamma_{\mu})U_{\mu}^{\dagger}(x)\}$ $-i\kappa_{\lambda}^{+}\kappa_{\nu}^{-}T\left\{\left(r+\gamma_{\nu}\right)U_{\nu}^{\dagger}(x-\nu)Q(x+\lambda,x-\nu)\left(r-\gamma_{\lambda}\right)U_{\lambda}^{\dagger}(x)\right\}$ $-i\kappa_{\mu}^{+}\kappa_{\lambda}^{-}T\left\{Q(x+\mu+\lambda,x)(r-\gamma_{\mu})(r+\gamma_{\lambda})U_{\mu}^{\dagger}(x+\lambda)U_{\lambda}^{\dagger}(x)\right\}$ U $+i\kappa_{\lambda}^{-}\kappa_{\nu}^{+}T\{(r+\gamma_{\lambda})(r-\gamma_{\nu})U_{\lambda}(x)U_{\nu}(x+\lambda)Q(x,x+\lambda+\nu)\}$ n $+i\kappa_{\mu}^{-}\kappa_{\lambda}^{+}T\left\{\left(r-\gamma_{\lambda}\right)U_{\lambda}(x)Q(x-\mu,x+\lambda)\left(r+\gamma_{\mu}\right)U_{\mu}(x-\mu)\right\}$ $+i\kappa_{\lambda}^{-}\kappa_{\nu}^{-}T\left\{\left(r+\gamma_{\lambda}\right)\left(r+\gamma_{\nu}\right)U_{\lambda}(x)U_{\nu}^{\dagger}(x+\lambda-\nu)Q(x,x+\lambda-\nu)\right\}$ $-i\kappa_{\mu}\kappa_{\lambda}^{-}T\left\{Q(x-\mu+\lambda,x)(r+\gamma_{\mu})(r+\gamma_{\lambda})U_{\mu}(x-\mu+\lambda)U_{\lambda}^{\dagger}(x)\right\}$

Observables

Propagators of π and ρ

pion operator: $\pi^a = \bar{\psi}\gamma_5\tau^a\psi$ a = 0, +, pion propagator: $\langle \pi^a(x)\pi^b(y)\rangle = \langle \bar{\psi}(x)\gamma_5\tau^a\psi(x)\bar{\psi}(y)\gamma_5\tau^b\psi(y)\rangle$ $= \int dU \det D(U)e^{-S_{\text{gauge}}(U)}[-\operatorname{Tr}\{\gamma_5\tau^a D^{-1}(U)_{xy}\gamma_5\tau^b D^{-1}(U)_{yx}\}$ $+\operatorname{Tr}\{\gamma_5\tau^a D^{-1}(U)_{xx}\}\cdot\operatorname{Tr}\{\gamma_5\tau^b D^{-1}(u)_{yy}\}]$

Tr: color, dirac Rho operator: $ho^a = ar{\psi} \gamma_\mu au^a \psi$ rho propagator: $\langle
ho^a(x)
ho^b(y)
angle$

• $D^{-1}(U)$ source term for isospin chemical potential $D^{-1} = \begin{pmatrix} (D^{\dagger}(\mu)D(\mu) + \lambda^2)^{-1}D^{\dagger}(\mu) & -\lambda (D^{\dagger}(\mu)D(\mu) + \lambda^2)^{-1}\gamma_5 \\ \lambda \gamma_5 D(\mu) (D^{\dagger}(\mu)D(\mu) + \lambda^2)^{-1}D^{-1}(\mu) & \gamma_5 D(\mu) (D^{\dagger}(\mu)D(\mu) + \lambda^2)^{-1}\gamma_5 \end{pmatrix}$

Isospin chemical potential affects propagators of π and $\rho.$

Propagators for π and ρ

• Pion

$$\begin{aligned} \langle \pi^{-}(x)\pi^{+}(y)\rangle &= -\mathrm{Tr}\left[\left\{D(\mu)(D(\mu)D^{\dagger}(\mu) + \lambda^{2})^{-1}\right\}_{xy}\left\{(D(\mu)D^{\dagger}(\mu) + \lambda^{2})^{-1}D^{\dagger}(\mu)\right\}_{yx}\right] \\ \langle \pi^{+}(x)\pi^{-}(y)\rangle &= -\mathrm{Tr}\left[\left\{(D(\mu)D^{\dagger}(\mu) + \lambda^{2})^{-1}D^{\dagger}(\mu)\right\}_{xy}\left\{D(\mu)(D(\mu)D^{\dagger}(\mu) + \lambda^{2})^{-1}\right\}_{yx}\right] \\ \langle \pi^{0}(x)\pi^{0}(y)\rangle &= -\frac{1}{2}\mathrm{Tr}\left[\gamma_{5}\left\{(D^{\dagger}(\mu)D(\mu) + \lambda^{2})^{-1}D^{\dagger}(\mu)\right\}_{xy}\gamma_{5}\left\{(D^{\dagger}(\mu)D(\mu) + \lambda^{2})^{-1}D^{\dagger}(\mu)\right\}_{yx} \\ &+ \left\{D(\mu)(D^{\dagger}(\mu)D(\mu) + \lambda^{2})^{-1}\right\}_{xy}\gamma_{5}\left\{D(\mu)(D^{\dagger}(\mu)D(\mu) + \lambda^{2})^{-1}\gamma_{5}\right\}_{yx}\right] \\ &+ \frac{1}{2}\mathrm{Tr}\left[\gamma_{5}(D^{\dagger}(\mu)(D(\mu) + \lambda^{2})^{-1}D^{\dagger}(\mu) - D(\mu)(D^{\dagger}(\mu)(D(\mu) + \lambda^{2})^{-1}\gamma_{5}\right]_{xy} \\ &\times \mathrm{Tr}\left[\gamma_{5}(D^{\dagger}(\mu)(D(\mu) + \lambda^{2})^{-1}D^{\dagger}(\mu) - D(\mu)(D^{\dagger}(\mu)(D(\mu) + \lambda^{2})^{-1}\gamma_{5}\right]_{yy}\end{aligned}$$

Disconnected diagram

At finite isospin chemical potential

- π^+, π^- :different response
- π^0 :contribution from disconnected diagrams appear.

• Wilson fermion

μ

μ_{I} Effect on Pion Correlators

G(t)

μ_{I} Effect on Pion Correlators

$$\pi^{-}(x)\pi^{+}(y): C_{+}\left(e^{-(m_{0}-\mu)t} + e^{-(m_{0}+\mu)(T-t)}\right)$$

$$\pi^{+}(x)\pi^{-}(y): C_{-}\left(e^{-(m_{0}+\mu)t} + e^{-(m_{0}-\mu)(T-t)}\right)$$

$$\Gamma_{a} \propto |\langle \pi^{a} | \pi^{a} | 0 \rangle|^{2}$$
NONAKA

G(t)

μ_{I} Effect on Pion Correlators

μ_l Effect on Rho Correlators

μ_l Effect on Rho Correlators

μ_l Effect on Rho Correlators

Isospin Chemical Potential Dependence

- heavy quark mass
- higher μ_l

Summary

- Isospin chemical potential dependence of m_{π} and m_{ρ}
 - Introduction of isospin chemical potential to HMC
 - Pion and rho propagators with finite μ_{I}
 - Isospin chemical potential dependence of m_{π} and m_{ρ}
 - pion (rho) condensation?
- Work in progress
 - Larger lattice size, high μ_{l} and light quark mass
 - π condensation, ρ condensation \iff m_{π}, m_{ρ}
 - Temperature dependence

