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1. Introduction

QCD phase diagram
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Complex chemical potential plane

» Partition function zeroes: complementary view of critical phenomena
Lee-Yang (1952)

[tzykson-Pearson-Zuber (1983)
- critical point and singularities in QCD Stephanov (2006)

» scaling in the complex plane

* in connection with experimental data Nakamura-Nagata (2013)
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EIn this talk, we have a look at complex effective potential

in terms of complex order parameter for complex L.

By using an effective theory based on a mean field theory,

we study
- singularities in the complex u plane
- extrema of real part of the effective potential

- the Stokes lines
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[ 2 a QCD effective theory: mean field approach
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m= 0 tricritical point: upper critical dimension

f d=3
-)' mean field description is expected to be valid (up to log corrections)
: because the system is effectively in three dimensions at finite 7T

m7’é 0 critical point= liquid-gas phase transition
: 0 massless

=3d Ising model

7T massive

M = {(qrLqr) =0 +iT -7
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éa QCD effective theory based on mean field approach

Hatta - Ikeda (2003)
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expands around the tricritical point (TCP) a=0,b=m =0

T, Ca T R T —l_ Da, e
a( 'u) ( 3) (,LL ,ug) CyD, — C,Dyp > 0.
b(T,u) = Cy (T —T3)+ Dy (1t — p3),




By switching on M , the condition for the critical end point
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stability condition
Ay >0 => llE =

2b(Te, ur) — Colg
Dy :

;typical behaviors of () at temperature around the CEP.

first order phase transition for ¢tz < 0 crtical point at tg = 0
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crossover for tg > 0

Omega susceptibility
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3. Singularities in the complex ¢ plane

0f 0°()
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- Ay 2450 + 3430 +4440% =0, 245 + 6430 + 124,02 = 0.
Example: for z,, = 0.2 and t5 = 0.2
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Susceptibility peak is attained at Re %
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phase diagram
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Locations of singularities type (iii)

for tp > 0
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3. Stokes lines

reflect the analytic structure around the branch points.
in the vicinity of the CEP

: The Stokes line is understood as the curve to which the Lee-Yang zeros
- accumulate.

Lee-Yang theorem:

zeros on the imaginary h axis (d-dimensions)
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Stokes lines
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locations of the global minimum of )
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Analytical continuation (6 # 0, 7)

vary 6 0 to 7

consider three cases
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: Summary
By using an effective theory based on a mean field theory,

- we studied
- - singularities in the complex u plane
- extrema of real part of the effective potential

- the Stokes lines

=

- the location of the crossover is regarded as a real part of
the singularity %
- the Stokes lines are located by explicitly looking at

Re () as a function of the complex order parameter o

- 7 in connection with Ejiri-H.Y. (2009)
- baryon number distribution and complex u, Morita et. al. (2013)




