The Pion scalar radius from two-flavor Wilson Lattice QCD

Vera Gülpers

G. von Hippel H. Wittig

Helmholtz-Institut Mainz and Institut für Kernphysik Johannes Gutenberg-Universität Mainz

July 29, 2013

Helmholtz-Institut Mainz

JULY 29 - AUGUST 03 2013 MAINZ, GERMANY

Introduction

Calculation Details

Results

Chiral Extrapolation

Introduction

Calculation Details

Results

Chiral Extrapolation

Introduction

Introduction - The scalar Form Factor of the Pion

describes the coupling of a charged pion to a scalar particle

$$\mathsf{F}_{_{\mathrm{S}}}^{\pi}\left(\mathsf{Q}^{2}
ight)\equiv\left\langle \pi^{+}\left(\mathsf{p}_{\mathrm{f}}
ight)
ight|\,\mathsf{m}_{\mathrm{d}}\overline{\mathsf{d}}\mathsf{d}+\mathsf{m}_{\mathrm{u}}\overline{\mathsf{u}}\mathsf{u}\,\left|\pi^{+}\left(\mathsf{p}_{\mathrm{i}}
ight)
ight
angle$$

- ► disconnected loop $\sum_{\vec{x}} \text{Tr} (D^{-1}(x, x))$ requires all-to-all propagator
- stochastic sources and generalized hopping parameter expansion

Introduction

Introduction - The scalar Radius of the Pion

scalar radius

$$\left\langle \mathsf{r}^{2} \right\rangle_{\mathrm{s}}^{\pi} = -\frac{6}{\mathsf{F}_{\mathrm{s}}^{\pi}(\mathbf{0})} \frac{\partial \mathsf{F}_{\mathrm{s}}^{\pi}(\mathsf{Q}^{2})}{\partial \mathsf{Q}^{2}} \Big|_{\mathsf{Q}^{2}=0}$$

 depends only on *l*₄ at NLO χPT [Gasser and Leutwyler, Phys. Lett. **B125**,325 (1983)]

$$\left\langle \mathsf{r}^2 \right\rangle_{\rm s}^{\pi} = \frac{1}{(4\pi\mathsf{F})^2} \left(-\frac{13}{2} \right) + \frac{6}{(4\pi\mathsf{F})^2} \left[\overline{\ell}_4 + \ln\left(\frac{\mathsf{m}_{\pi,\mathsf{phys}}^2}{\mathsf{m}_{\pi}^2} \right) \right]$$

 \rightarrow estimation of $\bar{\ell}_4$ alternative to the determination using f_K/f_π

▶ partially quenched \(\chi PT [J\)\"utther JHEP 1201, 007 (2012)] → disconnected contribution to scalar radius not negligible

Introduction

Calculation Details

Results

Chiral Extrapolation

Calculation of disconnected loops

- cf. [Bali et al. arXiv:0910.3970]
 - O(a)-improved Wilson-Dirac operator

$${\sf D}_{\sf sw} = rac{1}{2\kappa}\, \mathbbm{1} + {\sf c}_{\sf sw}{\sf B} - rac{1}{2}\,{\sf H} \quad = \; {\sf A} - rac{1}{2}\,{\sf H} \quad = \; {\sf A}\left(\mathbbm{1} - rac{1}{2}\,{\sf A}^{-1}{\sf H}
ight)$$

generalized hopping parameter expansion

$$\mathsf{D}_{\mathsf{sw}}^{-1} = \sum_{i=0}^{k-1} \left(\frac{1}{2} \, \mathsf{A}^{-1} \, \mathsf{H} \right)^i \, \mathsf{A}^{-1} + \left(\frac{1}{2} \, \mathsf{A}^{-1} \, \mathsf{H} \right)^k \mathsf{D}_{\mathsf{sw}}^{-1}$$

 D⁻¹_{sw} on the right hand side estimated using stochastic sources

$$\blacktriangleright \langle \text{loop} \rangle = \left\langle \sum_{\vec{x}} \text{Tr} \left(D^{-1}(x, x) \right) \right\rangle_{G}$$

choose N = 3 sources with order
 k = 6 of the generalized HPE

Extracting the form factor – 2pt and 3pt functions

2pt-function:

$$\mathsf{C}_{2\text{pt}}(\mathsf{t}_{s},\mathsf{p})\sim \frac{\mathsf{Z}_{\mathsf{p}}^{2}}{2\mathsf{E}_{\mathsf{p}}}\left[\mathrm{e}^{-\mathsf{t}_{s}\mathsf{E}_{\mathsf{p}}}+\mathrm{e}^{-(\mathsf{T}-\mathsf{t}_{s})\mathsf{E}_{\mathsf{p}}}\right]$$

with
$$\mathsf{Z}^2_\mathsf{p} = \left| \left< \pi(\mathsf{p}) \right| \phi(\mathsf{0}) \left| \mathsf{0} \right> \right|^2$$

▶ 3pt-function with subtracted vacuum $(0 < t < t_s)$

A few words on Renormalization

- chiral symmetry explicitly broken by Wilson fermions
- multiplicative and additive renormalization for the scalar operator

$$\left\langle \mathcal{O}^{\mathsf{R}} \right
angle = \mathsf{Z}_{\mathsf{s}} \left\langle \mathcal{O} - \mathsf{b}_{\mathsf{0}}
ight
angle$$

additive renormalization is canceled when subtracting the vacuum

- for all form factor data shown in this talk the multiplicative renormalization is not taken into account
- scalar radius independent of Z_s

Extracting the form factor – Ratios I

 appropriate ratios of three- and two-point functions cf. [Boyle et al. JHEP 0705, 016]

$$\begin{split} \mathsf{R}_{1}(t,t_{s},\mathsf{p}_{i},\mathsf{p}_{f}) &= \sqrt{\frac{\mathsf{C}_{3\mathsf{pt}}(t,t_{s},\mathsf{p}_{i},\mathsf{p}_{f})\mathsf{C}_{3\mathsf{pt}}(t,t_{s},\mathsf{p}_{f},\mathsf{p}_{i})}{\mathsf{C}_{2\mathsf{pt}}(t_{s},\mathsf{p}_{i})\mathsf{C}_{2\mathsf{pt}}(t_{s},\mathsf{p}_{f})}} \\ &\sim \frac{\langle \pi(\mathsf{p}_{f}) | \, \mathcal{O}_{\mathrm{S}} \, | \pi(\mathsf{p}_{i}) \rangle}{2\sqrt{\mathsf{E}_{\mathsf{p}_{i}}\mathsf{E}_{\mathsf{p}_{f}}}} \sqrt{\frac{\mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{i}}t_{s}} \mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{f}}t_{s}}}{(\mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{i}}t_{s}} + \mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{i}}(\mathsf{T}-\mathsf{t}_{s})}) \cdot (\mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{f}}t_{s}} + \mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{f}}(\mathsf{T}-\mathsf{t}_{s})})}} \end{split}$$

- ▶ all factors of **Z**_p cancel
- t-dependence is canceled
- \blacktriangleright remaining $t_s\text{-dependence}$ parameter-free since E_p are known from two-point functions

Extracting the form factor – Ratios II

 appropriate ratios of three- and two-point functions cf. [Boyle et al. JHEP 0705, 016]

$$\begin{split} \mathsf{R}_{3}(\mathsf{t},\mathsf{t}_{\mathsf{s}},\mathsf{p}_{\mathsf{i}},\mathsf{p}_{\mathsf{f}}) &= \frac{\mathsf{C}_{3\mathsf{pt}}(\mathsf{t},\mathsf{t}_{\mathsf{s}},\mathsf{p}_{\mathsf{i}},\mathsf{p}_{\mathsf{f}})}{\mathsf{C}_{2\mathsf{pt}}(\mathsf{t}_{\mathsf{s}},\mathsf{p}_{\mathsf{f}})} \sqrt{\frac{\mathsf{C}_{2\mathsf{pt}}(\mathsf{t}_{\mathsf{s}},\mathsf{p}_{\mathsf{f}})\mathsf{C}_{2\mathsf{pt}}(\mathsf{t},\mathsf{p}_{\mathsf{f}})\mathsf{C}_{2\mathsf{pt}}(\mathsf{t},\mathsf{p}_{\mathsf{f}})}{\mathsf{C}_{2\mathsf{pt}}(\mathsf{t}_{\mathsf{s}},\mathsf{p}_{\mathsf{i}})\mathsf{C}_{2\mathsf{pt}}(\mathsf{t},\mathsf{p}_{\mathsf{i}})\mathsf{C}_{2\mathsf{pt}}(\mathsf{t}_{\mathsf{s}}-\mathsf{t},\mathsf{p}_{\mathsf{f}})}} \\ &\sim \frac{\langle \pi(\mathsf{p}_{\mathsf{f}}) | \,\mathcal{O}_{\mathrm{S}} \, | \pi(\mathsf{p}_{\mathsf{i}}) \rangle}{2\sqrt{\mathsf{E}_{\mathsf{p}_{\mathsf{f}}}\mathsf{E}_{\mathsf{p}_{\mathsf{f}}}}} \,\mathsf{f}(\mathsf{t},\mathsf{t}_{\mathsf{s}}) \end{split}$$

- \blacktriangleright remaining t- and ts-dependence $f(t,t_s)$ parameter-free
- $\label{eq:ft} \mathsf{f}(\mathsf{t},\mathsf{t}_{\mathsf{s}}) \to 1 \qquad \text{ for } \quad \mathsf{0} \ll \mathsf{t} \ll \mathsf{t}_{\mathsf{s}} \ll \mathsf{T}/2$
- \blacktriangleright the factors ${\boldsymbol{\mathsf{Z}}}_p$ only cancel if the same type of source is used at pion source and sink
 - $\rightarrow R_3$ can not be used for smeared-local correlators

Ensembles

- \blacktriangleright $\mathcal{O}(a)\text{-improved}$ Wilson fermions with $N_f=2$ dynamical quarks
- overview over the CLS ensembles used

β	a[fm]	lattice	m_{π} [MeV]	$m_{\pi}L$	κ	Label	Statistics
5.3	0.063	$64 imes 32^3$	650	6.6	0.13605	E3	156
5.3	0.063	$64 imes 32^3$	605	6.2	0.13610	E4	162
5.3	0.063	$64 imes 32^3$	455	4.7	0.13625	E5	1000
5.3	0.063	$96 imes 48^3$	325	5.0	0.13635	F6	300
5.3	0.063	$96 imes 48^3$	280	4.3	0.13638	F7	351

- one lattice spacing a = 0.063 fm
- ▶ all ensembles fulfill $m_{\pi}L \ge 4$

Ensembles

- \blacktriangleright $\mathcal{O}(a)\text{-improved}$ Wilson fermions with $N_f=2$ dynamical quarks
- overview over the CLS ensembles used

β	a[fm]	lattice	m_{π} [MeV]	$m_{\pi}L$	κ	Label	Statistics
5.3	0.063	$64 imes 32^3$	650	6.6	0.13605	E3	156
5.3	0.063	$64 imes 32^3$	605	6.2	0.13610	E4	162
5.3	0.063	$64 imes 32^3$	455	4.7	0.13625	E5	1000
5.3	0.063	$96 imes 48^3$	325	5.0	0.13635	F6	300
5.3	0.063	$96 imes 48^3$	280	4.3	0.13638	F7	351

- one lattice spacing a = 0.063 fm
- ▶ all ensembles fulfill $m_{\pi}L \ge 4$

Introduction

Calculation Details

Results

Chiral Extrapolation

vanishing momentum transfer $\mathbf{Q}^2 = \mathbf{0}$

$$\begin{split} \mathsf{R} \equiv &\mathsf{R}_{1}(\mathsf{t},\mathsf{t}_{\mathsf{s}},0,0) = \mathsf{R}_{3}(\mathsf{t},\mathsf{t}_{\mathsf{s}},0,0) = \frac{\mathsf{C}_{3\mathsf{pt}}(\mathsf{t},\mathsf{t}_{\mathsf{s}},0,0)}{\mathsf{C}_{2\mathsf{pt}}(\mathsf{t}_{\mathsf{s}},0)} \\ & \sim \frac{\langle \pi(0) | \, \mathcal{O}_{\mathsf{S}} \, | \pi(0) \rangle}{2\mathsf{m}_{\pi}} \underbrace{\frac{\mathsf{e}^{-\mathsf{m}_{\pi}\mathsf{t}_{\mathsf{s}}} + \mathsf{e}^{-\mathsf{m}_{\pi}(\mathsf{T}-\mathsf{t}_{\mathsf{s}})}}{\mathsf{e}^{-\mathsf{m}_{\pi}\mathsf{t}_{\mathsf{s}}} + \mathsf{e}^{-\mathsf{m}_{\pi}(\mathsf{T}-\mathsf{t}_{\mathsf{s}})}}}_{=\mathsf{f}(\mathsf{t}_{\mathsf{s}})} \end{split}$$

vanishing momentum transfer $\mathbf{Q}^2 = \mathbf{0}$

$$\begin{split} \mathsf{R} \equiv &\mathsf{R}_{1}(\mathsf{t},\mathsf{t}_{\mathsf{s}},0,0) = \mathsf{R}_{3}(\mathsf{t},\mathsf{t}_{\mathsf{s}},0,0) = \frac{\mathsf{C}_{3\mathsf{pt}}(\mathsf{t},\mathsf{t}_{\mathsf{s}},0,0)}{\mathsf{C}_{2\mathsf{pt}}(\mathsf{t}_{\mathsf{s}},0)} \\ & \sim \frac{\langle \pi(0) | \, \mathcal{O}_{\mathsf{S}} \, | \pi(0) \rangle}{2\mathsf{m}_{\pi}} \underbrace{\frac{\mathsf{e}^{-\mathsf{m}_{\pi}\mathsf{t}_{\mathsf{s}}} + \mathsf{e}^{-\mathsf{m}_{\pi}(\mathsf{T}-\mathsf{t}_{\mathsf{s}})}}{\mathsf{e}^{-\mathsf{m}_{\pi}\mathsf{t}_{\mathsf{s}}} + \mathsf{e}^{-\mathsf{m}_{\pi}(\mathsf{T}-\mathsf{t}_{\mathsf{s}})}}}_{=\mathsf{f}(\mathsf{t}_{\mathsf{s}})} \end{split}$$

connected $\mathbf{Q}^2 = \mathbf{0}$

Vera Gülpers (Helmholtz-Institut Mainz)

connected $Q^2 = 0$

- divide out known t_s-dependence
- excited state contributions for small t_s
- \blacktriangleright global fit to $t_s \geq 24$

vanishing momentum transfer $Q^2 = 0$

$$\mathsf{R} = \frac{\mathsf{C}_{3\text{pt}}(\mathsf{t},\mathsf{t}_{s},0,0)}{\mathsf{C}_{2\text{pt}}(\mathsf{t}_{s},0)} \sim \frac{\langle \pi(0) | \, \mathcal{O}_{\mathrm{S}} \, | \pi(0) \rangle}{2m_{\pi}} \underbrace{\frac{e^{-m_{\pi}\mathsf{t}_{s}}}{\underbrace{e^{-m_{\pi}\mathsf{t}_{s}} + e^{-m_{\pi}(T-\mathsf{t}_{s})}}_{=f(\mathsf{t}_{s})}}$$

disconnected $Q^2 = 0$

disconnected $\mathbf{Q}^2 = \mathbf{0}$

- divide out known t_s -dependence
- excited state contributions for small t_s
- \blacktriangleright global fit to $t_s \geq 24$

non-vanishing momentum transfer - connected contribution

 $\blacktriangleright \mbox{ only smeared-local data available so far} \\ \rightarrow \mbox{ use } R_1$

$$\begin{split} \mathsf{R}_{1}(t,t_{s},\mathsf{p}_{i},\mathsf{p}_{f}) &= \sqrt{\frac{\mathsf{C}_{3\mathsf{pt}}(t,t_{s},\mathsf{p}_{i},\mathsf{p}_{f})\mathsf{C}_{3\mathsf{pt}}(t,t_{s},\mathsf{p}_{f},\mathsf{p}_{i})}{\mathsf{C}_{2\mathsf{pt}}(t_{s},\mathsf{p}_{i})\mathsf{C}_{2\mathsf{pt}}(t_{s},\mathsf{p}_{f})}} \\ &\sim \frac{\langle \pi(\mathsf{p}_{f}) | \,\mathcal{O}_{\mathrm{S}} \, | \pi(\mathsf{p}_{i}) \rangle}{2\sqrt{\mathsf{E}_{\mathsf{p}_{i}}\mathsf{E}_{\mathsf{p}_{f}}}} \sqrt{\frac{\mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{i}}t_{s}} \mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{f}}t_{s}}}{(\mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{i}}t_{s}} + \mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{i}}(\mathsf{T}-t_{s})}) \cdot (\mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{f}}t_{s}} + \mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{f}}(\mathsf{T}-t_{s})})}} \end{split}$$

non-vanishing momentum transfer - connected contribution

 \blacktriangleright only smeared-local data available so far \rightarrow use R_1

$$\begin{split} \mathsf{R}_{1}(t,t_{s},\mathsf{p}_{i},\mathsf{p}_{f}) &= \sqrt{\frac{\mathsf{C}_{3\mathsf{pt}}(t,t_{s},\mathsf{p}_{i},\mathsf{p}_{f})\mathsf{C}_{3\mathsf{pt}}(t,t_{s},\mathsf{p}_{f},\mathsf{p}_{i})}{\mathsf{C}_{2\mathsf{pt}}(t_{s},\mathsf{p}_{i})\mathsf{C}_{2\mathsf{pt}}(t_{s},\mathsf{p}_{f})}} \\ &\sim \frac{\langle \pi(\mathsf{p}_{f}) |\,\mathcal{O}_{\mathrm{S}}\,|\pi(\mathsf{p}_{i})\rangle}{2\sqrt{\mathsf{E}_{\mathsf{p}_{i}}\mathsf{E}_{\mathsf{p}_{f}}}} \sqrt{\frac{\mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{i}}t_{s}} + \mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{i}}t_{s}}}{(\mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{i}}t_{s}} + \mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{i}}(\mathsf{T}-t_{s})}) \cdot (\mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{f}}t_{s}} + \mathrm{e}^{-\mathsf{E}_{\mathsf{p}_{f}}(\mathsf{T}-t_{s})})}} \end{split}$$

- momentum insertion via Fourier transformation
- momentum insertion at the operator:

$$\vec{\mathsf{q}} = (0,0,1) \frac{2\pi}{\mathsf{L}}$$

momentum transfer:

$$Q^2 = -q^2 = 0.278 \, \text{GeV}^2$$

 \blacktriangleright global fit to $t_s \geq 24$

Lattice 2013

non-vanishing momentum transfer - disconnected contribution

- use smeared-smeared pion two-point functions
 - $\rightarrow R_1$ or R_3 can be used
- R₃ gives a much cleaner signal

$$\begin{split} \mathsf{R}_{3}(\mathsf{t},\mathsf{t}_{s},\mathsf{p}_{i},\mathsf{p}_{f}) &= \frac{\mathsf{C}_{3\text{pt}}(\mathsf{t},\mathsf{t}_{s},\mathsf{p}_{i},\mathsf{p}_{f})}{\mathsf{C}_{2\text{pt}}(\mathsf{t}_{s},\mathsf{p}_{f})} \sqrt{\frac{\mathsf{C}_{2\text{pt}}(\mathsf{t}_{s},\mathsf{p}_{f})\mathsf{C}_{2\text{pt}}(\mathsf{t},\mathsf{p}_{f})\mathsf{C}_{2\text{pt}}(\mathsf{t},\mathsf{p}_{i})}{\mathsf{C}_{2\text{pt}}(\mathsf{t}_{s},\mathsf{p}_{i})\mathsf{C}_{2\text{pt}}(\mathsf{t},\mathsf{p}_{i})\mathsf{C}_{2\text{pt}}(\mathsf{t}_{s}-\mathsf{t},\mathsf{p}_{f})}} \\ &\sim \frac{\langle \pi(\mathsf{p}_{f}) | \,\mathcal{O}_{\mathrm{S}} \, | \pi(\mathsf{p}_{i}) \rangle}{2\sqrt{\mathsf{E}_{\pi}(\mathsf{p}_{i})\mathsf{E}_{\pi}(\mathsf{p}_{f})}} \, \mathsf{f}(\mathsf{t},\mathsf{t}_{s}) \end{split}$$

non-vanishing momentum transfer - disconnected contribution

- use smeared-smeared pion two-point functions
 - \rightarrow R_1 or R_3 can be used
- R₃ gives a much cleaner signal

$$\begin{split} \mathsf{R}_{3}(\mathsf{t},\mathsf{t}_{s},\mathsf{p}_{i},\mathsf{p}_{f}) &= \frac{\mathsf{C}_{3\text{pt}}(\mathsf{t},\mathsf{t}_{s},\mathsf{p}_{i},\mathsf{p}_{f})}{\mathsf{C}_{2\text{pt}}(\mathsf{t}_{s},\mathsf{p}_{f})} \sqrt{\frac{\mathsf{C}_{2\text{pt}}(\mathsf{t}_{s},\mathsf{p}_{f})\mathsf{C}_{2\text{pt}}(\mathsf{t},\mathsf{p}_{f})\mathsf{C}_{2\text{pt}}(\mathsf{t},\mathsf{p}_{i},\mathsf{p}_{i})}{\mathsf{C}_{2\text{pt}}(\mathsf{t}_{s},\mathsf{p}_{i})\mathsf{C}_{2\text{pt}}(\mathsf{t},\mathsf{p}_{i})\mathsf{C}_{2\text{pt}}(\mathsf{t}_{s}-\mathsf{t},\mathsf{p}_{f})}} \\ &\sim \frac{\langle \pi(\mathsf{p}_{f}) | \,\mathcal{O}_{\mathrm{S}} \, | \pi(\mathsf{p}_{i}) \rangle}{2\sqrt{\mathsf{E}_{\pi}(\mathsf{p}_{i})\mathsf{E}_{\pi}(\mathsf{p}_{f})}} \, \mathsf{f}(\mathsf{t},\mathsf{t}_{s}) \end{split}$$

- momentum insertion via Fourier transformation
- momentum insertion at the operator:

$$\vec{\mathsf{q}} = (0,0,1) \frac{2\pi}{\mathsf{L}}$$

momentum transfer:

$$Q^2 = -q^2 = 0.278 \, \text{GeV}^2$$

• global fit to
$$t_s \ge 24$$

scalar radius

 $\blacktriangleright~Q^2$ - dependence of the form factor at $Q^2=0$

$$\left< r^2 \right>_{\rm s}^{\pi} = -\frac{6}{F_{\rm s}^{\pi}(0)} \frac{\partial F_{\rm s}^{\pi}(Q^2)}{\partial Q^2} \Big|_{Q^2=0}$$

two momentum transfers

$$\mathsf{F}^{\pi}_{_{\mathrm{S}}}(\mathsf{Q}^2) = \mathsf{F}^{\pi}_{_{\mathrm{S}}}(\mathbf{0}) \left(1 - \frac{1}{6} \left\langle \mathsf{r}^2 \right\rangle_{_{\mathrm{S}}}^{\pi} \mathsf{Q}^2 + \mathcal{O}(\mathsf{Q}^4)\right)$$

Introduction

Calculation Details

Results

Chiral Extrapolation

m_{π}^2 -dependence

\mathbf{m}_{π}^{2} -dependence

$$\blacktriangleright \text{ NLO } \chi \text{PT: } \left\langle r^2 \right\rangle_{\text{s}}^{\pi} = \frac{1}{(4\pi\text{F})^2} \left(-\frac{13}{2} \right) + \frac{6}{(4\pi\text{F})^2} \left[\overline{\ell}_4 + \ln\left(\frac{\text{m}_{\pi,\text{phys}}^2}{\text{m}_{\pi}^2} \right) \right]$$

m_{π}^2 -dependence

$$\blacktriangleright \text{ NLO } \chi \text{PT: } \left\langle r^2 \right\rangle_{\text{s}}^{\pi} = \frac{1}{(4\pi\text{F})^2} \left(-\frac{13}{2} \right) + \frac{6}{(4\pi\text{F})^2} \left[\overline{\ell}_4 + \ln\left(\frac{\text{m}_{\pi,\text{phys}}^2}{\text{m}_{\pi}^2} \right) \right]$$

▶ $\pi\pi$ -scattering: Colangelo et al. Nucl. Phys. **B603**, 125 (2001)

m_{π}^2 -dependence

NLO
$$\chi$$
PT: $\langle \mathbf{r}^2 \rangle_s^{\pi} = \frac{1}{(4\pi F)^2} \left(-\frac{13}{2} \right) + \frac{6}{(4\pi F)^2} \left[\overline{\ell}_4 + \ln \left(\frac{\mathbf{m}_{\pi,\text{phys}}^2}{\mathbf{m}_{\pi}^2} \right) \right]$

▶ $\pi\pi$ -scattering: Colangelo et al. Nucl. Phys. **B603**, 125 (2001)

- ▶ disconnected not negligible (χ PT: Jüttner JHEP **1201**, 007 (2012))
- disconnected required for expected behaviour

Introduction

Calculation Details

Results

Chiral Extrapolation

Conclusion

- disconnected contribution can be calculated precisely using the generalised hopping parameter expansion
- disconnected contribution to the scalar radius not negligible
 \rightarrow required to obtain behaviour from NLO χ PT
- extract low-energy constant $\bar{\ell}_4$
- scalar radius at physical pion mass in agreement with value from $\pi\pi$ -scattering

Outlook

- smaller pion masses
- other lattice spacings
- study of systematic errors
- NNLO χ PT (combined with vector form factor)

Introduction

Calculation Details

Results

Chiral Extrapolation

Backup

comparison with JLQCD/TWQCD

[Aoki et al. Phys. Rev. D80, 034508 (2009)]

- overlap fermions
- ▶ a = 0.1184 fm
- $\blacktriangleright \mathbf{T} \times \mathbf{L}^3 = \mathbf{32} \times \mathbf{16}^3$
- ▶ two lightest ensembles $m_{\pi}L < 4$

- O(a)-improved Wilson fermions
- ▶ a = 0.063 fm
- T \times L³ = 64 \times 32³ and 96 \times 48³
- ▶ all ensembles $m_{\pi}L \ge 4$