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Objectives

We want to be able to compute the bound states of QCD, and to test these 
predictions against high-quality experimental data.

Within this project, we want to go beyond the spectrum to compute the 
properties of the excited states. In particular,  we probe the structure of the pion 
and its excitations through the computation of the quark distribution amplitudes 
on improved anisotropic lattices.
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Motivation
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Fig. 1. Spin-identified spectrum of isovector (octet) mesons from 
the                              lattices [1].

Recent progress aimed at extracting the spectrum of excited states (both for 
mesons and for baryons):

Fig. 2. Spin-identified spectrum of Nucleons and Deltas from the                              
lattices [2].

[1] J. Dudek, R. Edwards, M. Peardon, D. Richards, C. Thomas, arXiv:1004.4930v1 [hep-ph]

[2] R. Edwards , J. Dudek, D. Richards, S. Wallace, arXiv:1104.5152v2 [hep-ph]

mπ = 524MeV
mπ ∼ 700MeV
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Anisotropic lattices

In Euclidean space-time, the excited-state spectrum can be computed by 
observing the behavior of correlation functions formed from appropriately 
constructed operators: 

These correlation functions decay faster than those for ground state, and at large 
times propagation of noise swamps signals.

Resolution of the excited states is
 not a trivial problem!
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���n�

|Ô
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Anisotropic lattices

To overcome this difficulty, we use anisotropic lattices with  finer temporal 
discretization

(this also let us avoid the computational cost that would come from reducing 
the spacing in all directions) 

We use a discretization in which the spatial lattice spacing (    ) and temporal 
lattice spacing (    ) are related through:
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The lattice action

We use dynamical anisotropic lattices generated by the Hadron Spectrum 
Collaboration [3, 4]:

                     flavor ( 2 dynamical light quarks and a dynamical strange quark) 
‘clover’ action with stout-link smearing;

Symanzik- and tadpole-improved gauge action.
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[3] R. Edwards, B. Joo, H.-W. Lin, Phys. Rev. D78 (2008) 054501. [4] H.-W. Lin et al., Phys. Rev. D79 (2009) 043502.

Nf = 2 + 1

Table 1. Gauge-field ensembles: lattice 
volume, pion mass and number of gauge 
configurations

Volume mπ Ncnfg

163 × 128 700 MeV 115

TABLE XI. Lattice ensembles

a0 π π2 b0 ρ ρ2 a1 b1

Γ 1 γ5 γ0γ5 γ0 γi γ0γi γ5γi γ0γ5γi

TABLE XII. Gamma matrix naming scheme

J Λ(dim)

0 A1(1)

1 T1(3)

2 T2(3)⊕ E(2)

3 T1(3)⊕ T2(3)⊕A2(1)

4 A1(1)⊕ T1(3)⊕ T23⊕ E(2)

TABLE XIII. Continuum spins subduced into lattice irreps.

f0π
f0π

f1π
f0π

f2π
f0π

f3π
f0π

82 confg 1 0.5885(±0.047118) 0.0549(±0.0710879) 0.554586(±0.08898870)

115 confg 1 0.5412932(±0.0385390) 0.101152(±0.04810) 0.55505761(±0.0477693)

TABLE XIV. Ratio of fπ for excited to ground states
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Meson spectroscopy on the lattice

To extract the spectrum of the excited states from the exponentially suppressed 
signals, we apply the variational method [5, 6].

Let us extract more information by analyzing a whole matrix of correlators for 
each irrep:

To determine the physical observables from this matrix, we solve generalized 
eigenvalue problem:

The ordered eigenvalues (principal correlators) behave as:

7
[5] C. Michael, Nucl. Phys. B259 (1985) 58. [6] M. Luscher, U. Wolf, Nucl. Phys. B339 (1990) 222.
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Basis of interpolators and distillation technique

It is essential to use a “good” basis of interpolators which would generate states 
from the vacuum that have large overlap with the physical state we are 
interested in. 

            To achieve this, we use the distillation technique [7]. It defines a smearing 
function

and provides an efficient method which allow us to calculate correlation 
functions with large basis of operators.

Smeared quark fields are constructed by applying this distillation operator (6) to 
each quark field appearing in the interpolating operators.

8[7] M. Peardon et al., Phys. Rev. D80 (2009) 054506.

�xy(t) =
Nvec�

k=1

F (λ(k))ξ(k)x (t)ξ(k)∗y (t) (6)
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Operator construction

To  obtain a large basis of operators that we can use in variational method, we 
apply a derivative-based construction for operators described by Hadron 
Spectrum collaboration [8, 9]: gauge-covariant spatial derivatives are combined 
with a gamma-matrix within a fermion bilinear so that the operator is of general 
form

9
[8] J. Dudek, R. Edwards, M. Peardon, D. Richards, C. Thomas, Phys. Rev. Lett. 103 (2009) 262001. 

[9] J. Dudek, R. Edwards, M. Peardon, D. Richards, C. Thomas, Phys. Rev. D82 (2010) 034508. 

ψ̄Γ
←→
D i

←→
D j ...ψ (7)
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(8)

Volume mπ Ncnfg

163 × 128 700 MeV 82

163 × 128 700 MeV 115

TABLE XI. Lattice ensembles

a0 π π2 b0 ρ ρ2 a1 b1

Γ 1 γ5 γ0γ5 γ0 γi γ0γi γ5γi γ0γ5γi

TABLE XII. Gamma matrix naming scheme
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Table 2. Gamma matrix naming scheme

The naming scheme of gamma matrix is 
given in the Table 2, and we use the 
following notation for our operators:
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Lattice irreps

 We include operators built from all possible combinations of gamma matrices 
up to three derivatives and then subduced into lattice irreps:
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Table 3. Continuum spins subduced into 
lattice irreps.

Formula for construction operators that 
transform in a definite lattice irrep and row 
from the continuum operator             :

Volume mπ Ncnfg

163 × 128 700 MeV 82

163 × 128 700 MeV 115

TABLE XI. Lattice ensembles

a0 π π2 b0 ρ ρ2 a1 b1

Γ 1 γ5 γ0γ5 γ0 γi γ0γi γ5γi γ0γ5γi

TABLE XII. Gamma matrix naming scheme

J Λ(dim)

0 A1(1)

1 T1(3)

2 T2(3)⊕ E(2)

3 T1(3)⊕ T2(3)⊕A2(1)

4 A1(1)⊕ T1(3)⊕ T23⊕ E(2)

TABLE XIII. Continuum spins subduced into lattice irreps.
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[8] J. Dudek, R. Edwards, M. Peardon, D. Richards, C. Thomas, Phys. Rev. Lett. 103 (2009) 262001. 

[9] J. Dudek, R. Edwards, M. Peardon, D. Richards, C. Thomas, Phys. Rev. D82 (2010) 034508. 
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“Ideal” operator

Different interpolators one might use in the variational approach are just the 
basis one offers to the system. The relative weight of these basis elements come 
out of the variational procedure:

once generalized eigenvalue problem

is solved, one can define new interpolators       as a linear combination of the 
original interpolators:

11

         the variational method determines which linear combination of the basis 
interpolators best describe a physical state (an optimal operator).

Cij(t)v
(n)
j = λ(t)(n)Cij(t0)v

(n)
j (4)

Ω(n)

Ω(n) =
r�

i=1

v(n)∗i Oi (10)
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Pion decay constant

There are successful applications of the variational method, the distillation 
technique and described operator construction to the calculations on the 
anisotropic lattices ( for both excited mesons [8, 9, 10] and baryons [2, 11]).

One of the interesting challenges is the evaluation of matrix elements for excited 
states. Within this project, we apply all mentioned above techniques to study 
the properties of spectrum of excitations of a pion. In particular, we are 
interested in calculation of the decay constants for pion excitations. 

12

[10] J. Dudek, R. Edwards, B. Joo, M. Peardon, D. Richards, C. Thomas, Phys. Rev. D83 (2011) 111502. 

[11] J. Dudek, R. Edwards, Phys. Rev. D85 (2012) 054016. 
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Pion decay constant
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For a pion at rest, one can calculate the decay constant from the matrix element 
of the local axial vector current:

with                            and                    . 

Using reconfit_svd package developed by Hadron Spectrum collaboration, we 
determine       from the fits to the smeared-local correlators                   
constructed using the optimal operator  at the source.

To obtain a physical decay constant from the lattice value, we calculate [12]

fπ

AL
µ = ψ̄γµγ5ψ π = ψ̄γ5ψ

�0|AL
µ(t)Ω

S(0)|0�

fπ = ξ−3/2a−1
t f latt

π (12)

[12] J. Dudek, R. Edwards, D. Richards, Phys. Rev. D73 (2006) 074507. 

�0|AL
µ(0)|π� = fπmπ (11)
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Pion decay constant

The lattice calculations have already achieved some progress in this direction 
[13]:

14
[13] C. McNeile, C. Michael, Phys. Lett.. B 642 (2006) 244. 
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Fig. 3. Ratio of the decay constant of the first 
excited to ground state light pseudo-scalar meson 
as a function of the pion mass squared [12].
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Pion decay constant

The energy of two static color sources           separated by distance      serves as a 
useful reference scale for spectrum calculations (as in Fig. 3). This is most 
usefully described by Sommer parameter      , defined as:

15

V (r) r

r0

For our ensembles [4] ,                                  and                                  so, taking 
anisotropy into account, 

atmπ = 0.1483(2) r0/as = 3.214(10)

(r0mπ)
2 ≈ 2.783

and we can compare our result with previous calculations (see Fig. 4).

−r2
∂V (r)

∂r
|r=r0 = 1.65 (13)
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Pion decay constant: first results
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Fig. 4. Ratio of the decay constant of the 
first excited to ground state light pseudo-
scalar meson as a function of the pion mass 
squared [12] with HadSpec collaboration 
result.
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Pion decay constant: first results

17
Fig. 5. First results for the ratios of the decay constants for the first 3 excited states.
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Pion decay constant: first results

18

operator ground state 1st excited 2nd excited 3rd excited

(a0 ×D[3]
J1,3=1,J=0)

J=0 0.0605631 -0.104103 -0.13088 -0.0256733

(a1 ×D[3]
J1,3=1,J=1)

J=0 0.100849 -0.549734 -0.13767 0.147843

(b1 ×D[1]
J=1)

J=0 0.0992313 -0.923783 -0.253904 1.05823

(b1 ×D[3]
J1,3=0,J=1)

J=0 -0.0735182 0.0189848 0.216605 0.326917

(b1 ×D[3]
J1,3=2,J=2)

J=0 0.111069 -0.443801 -0.348528 -0.137232

(b1 ×D[3]
J1,3=2,J=3)

J=4 -0.0013408 0.0275318 -0.00983878 -0.018632

(π2 ×D[0]
J=0)

J=0 0.129139 -0.993586 -0.00597513 0.823323

(π2 ×D[2]
J=0)

J=0 0.0587748 -0.338092 -0.0125717 0.319818

(π ×D[0]
J=0)

J=0 -0.0734256 0.120269 -0.237979 0.288355

(π ×D[2]
J=0)

J=0 -0.0026432 0.0916815 -0.0851646 0.187708

(ρ2 ×D[2]
J=1)

J=0 0.171492 -0.278485 -0.479525 -0.767749

(ρ×D[2]
J=1)

J=0 0.142252 -0.378953 -0.225052 -0.520194

TABLE IX. A−+
1 basis operators weights from variational method (115 configurations).
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Table 4. Relative weights of the           basis 
operators obtained from the variational method.

A−+
1

Monday, July 29, 2013



Rho decay constant
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Two different definitions of the rho-meson decay constant:

�0|Vµ(0)|ρ� = �µ
m2

ρ

fρ
(14)

�0|Vµ(0)|ρ� = �µfρmρ (15)

(here                      and      is the polarization vector of rho).Vµ = ψ̄γµψ �µ

We calculate        from the correlation function                              .fρ �0|Vk(t)V
†
k (0)|0�

Preliminary result for the ratio of the first to the ground state rho decay 
constant:

f1
ρ

f0
ρ

= 0.933(27) (16)
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increase the number of gauge configurations; use lighter quark masses to enable 
comparison with QCD-inspired models of the pion;

compute the leptonic decay constants of the rho meson and its excitations;

complete calculation of the matching coefficients in order to relate the lattice 
decay constants and other computed on the lattice parameters to those 
measured experimentally.

20

Future plans
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