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typical lattice problem:
Z:/Dxefs[xl; x=(x1,...,Xd) (1)

(0y =2z / Dx e~ O[] 2)

> stochastic approximation through Markov chain Monte Carlo methods:
Metropolis algorithm, HMC , ...

» finite Markov chain: xi,...,xy — N samples of O: Ox,..., Oy
» O; random variables with variance 0%

> estimate (O) = & SV, O; has standard error

Aﬁ:%

> need 100 times more statistics to get additional digit of precision

> past improvements: reduce oo and auto-correlation

» Improved error scaling would be highly desirable!



improved error scaling?

quasi-Monte Carlo (QMC) is an approach to improve the asymptotic error
behaviour
see for example F. Kuo, Ch. Schwab and I. Sloan, 2012[KSS12]

>

construction of deterministic low-discrepancy point-sets in arbitrary many
dimensions

low-discrepancy — “more uniform” (see below)

promises N1 asymptotic error behaviour for integrands with certain
properties (e.g. Gaussian)

— two times more digits with the same number of samples!!

applied successfully to financial problems (see bibliography)



QMC point sets are more uniform

How does an actual uniform sampling in two dimensions look like?
Example: 512 two-dimensional pseudo-random points

pseudo random 2d point set histogram of counts.

frequency

» sample 512 points

> introduce grid of 8 x 8 equal . L. . .
» = Poisson distribution with

squares
»> count number of points in each A=h=38

square » uneven sampling — larger
> count occurrence of 1,2, ... stochastic error

points in a square (histogram of
histogram)



QMC point set (2d Sobol samples) :
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quasi-Monte Carlo point set (Sobol) histogram of counts
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Figure: 512 uniform 2d Sobol points

each square contains same number of points — delta distribution
even coverage

less stochastic fluctuations

simulate effect of higher statistics with much less samples

in this sense QMC is exactly what we want

randomisation possible (RQMC) w/o changing properties — practical
error estimation



problem description
lattice action (see “Creutz and Freedman” [CF81]):
2

S= i Mo (s —x)" | 12 s =x (p.b.)
=23 =5 g 7x, Xi | 7 Xd+1=Xx1 (p.b.
i=1

My . .. particle mass
p? = Mow?® . . . frequency/spring constant
a...lattice spacing

d...number of lattice sites — T = da...time extent

» A\ =0 — harmonic oscillator
» )\ > 0 — anharmonic oscillator, > < 0 — double well potential

Anharmonic potential i >0 Anharmonic potential p? <0
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Figure: two cases for the anharmonic potential




observables

primary observables

- ZX
ZX:

(X Xktj) = E XiXi+j) . . . correlator

derived quantities

4

Eo = 3A() + () + b2

E; — Ey = energy gap from correlator fit

theoretically known for a— 0, T = da — oo (iterative method)
Blankenbecler, DeGrand and Sugar 1980 [BDS80]



experiment |: harmonic oscillator (A =0, 12 >0)

partition function can be written as multivariate Gaussian integral

Z= /Dxexp (—lec—lx) (8)

e CER SURE TUNRS Y 9)

covariance matrix: C = SDS* — D = diag(f1,...,84) Bi € RT

x=5w = Z—>/Dwexp<—z2lﬂ'w,-2> (10)

— sampling algorithm
> generate uniform z € [0,1]¢ (pseudo random / QMC )

» w; = /Bid"Y(z), d71... inverse standard normal CDF

> ordering of eigenvalues 31 > B2 > ... > B4 when using QMC
> like ordering of importance z; > zp > ... > z4

» x; = S;w; ( Hartley transformation, involutive: S = S™' = S*)



harmonic oscillator results

parameters: ;> =2.0, My =05 a=0.5 & d =100

Error of <x*> for the Harmonic Oscillator Fit QMC, a =-1.007799 +-0.01490616
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Figure: left: asymptotic error behaviour of MC/QMC, right: fit of QMC error ~ N¢

» — QMC at work

> trivial, but successful application to physical problem



experiment |1: anharmonic oscillator (A =1, y?> <0)

direct sampling not possible because of anharmonic part of the potential
— do reweighting

Z = /Dxexp <—;xtC_1x - aAfo) (11)

C~* indefinite (42 < 0) — define C,! = 240 (14 2, 20)55 — 3 (341 + 65-1))

sim

with ,u,gim > 0, arbitrary insert the ' productlve 0"

1
Z = /’Dxexp —*X Cs:mX_EXt(C71 - Cs;i)x— a)\Zx;‘ (12)
_,_/ i
sampling .
reweighting
-1
- /Dx e 3 Can* W(x) (13)

— sampling like harmonic oscillator but with C — Cg;, observable estimation from
samples (x0);1.... v

> W) O(x) _
S

=

(0) =



numerical results/anharmonic oscillator
parameters: My = 0.5, a =0.015, ,u2 = -16

fitt AO ~ CN™

l

[ 0] o [ logC | x?/dof |
d=100 | X? | -0.763(8) | 2.0(1) | 79/6
X* | -0.758(8) | 4.0(1) | 132 /6
Ey | -0.737(9) | 4.0(1) | 83/6
d=1000 | X? | -0.758(14) | 2.0(2) | 5.0/ 4
X* | -0.755(14) | 4.0(2) | 5.7 /4
Eo | -0.737(13) | 4.0(2) | 4.0/ 4
Error of <X?>, d = 1000 Error of <X*>, d = 1000 Error of Eo, d =1000
B T T T % T T T T T \‘\
- o o - o o - o o
N N N

( arXiv:1302.6419 , K. Jansen, H. Leovey, A. Ammon, A.

Griewank, M. Miiller-PreuBker, 2013[JLAT 13])



energy gap

>

>

asymptotic behaviour of correlator

non-trivial observable

not possible to detect on present parameter setup (T too small)
changed p? = =16 — p?> = —4 ,

energy gap: 0.0015 — 1.576

result obtained for d = 100, N = 2°%,2% 2 2 and 400 Sobol’ sequences each:

a = —0.735(13)

(Tobias Hartung, 2013, personal communication)



outlook & conclusions

» harmonic oscillator: QMC works perfectly (as expected)

. . N . . _3
> anharmonic oscillator: significantly improved error scaling — N2

remaining questions:

3
> Why do we observe this N~ 4 behaviour??
> further improvements by generalised choice of Cgjp,?

> other, possibly non-Gaussian, sampling methods

> next step: one-dimensional spin model in cosine discretisation

Sl¢] = Iaz —%COS(QZ‘H — &) (14)

i

study x o (topological susceptibility) and AE = E; — Ey (energy gap)
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