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typical lattice problem:

Z =

∫
Dx e−S[x] ; x = (x1, . . . , xd) (1)

〈O〉 = Z−1

∫
Dx e−S[x] O[x ] (2)

I stochastic approximation through Markov chain Monte Carlo methods:
Metropolis algorithm, HMC , . . .

I finite Markov chain: x1, . . . , xN → N samples of O: O1, . . . ,ON

I Oi random variables with variance σ2
O

I estimate 〈O〉 = 1
N

∑N
i=1 Oi has standard error

∆〈O〉 =
σO√

N

I need 100 times more statistics to get additional digit of precision

I past improvements: reduce σO and auto-correlation

I Improved error scaling would be highly desirable!



improved error scaling?

quasi-Monte Carlo (QMC) is an approach to improve the asymptotic error
behaviour
see for example F. Kuo, Ch. Schwab and I. Sloan, 2012[KSS12]

I construction of deterministic low-discrepancy point-sets in arbitrary many
dimensions

I low-discrepancy → “more uniform” (see below)

I promises N−1 asymptotic error behaviour for integrands with certain
properties (e.g. Gaussian)

I → two times more digits with the same number of samples!!

I applied successfully to financial problems (see bibliography)



QMC point sets are more uniform
How does an actual uniform sampling in two dimensions look like?
Example: 512 two-dimensional pseudo-random points
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pseudo random 2d point set histogram of counts
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I sample 512 points

I introduce grid of 8× 8 equal
squares

I count number of points in each
square

I count occurrence of 1, 2, . . .
points in a square (histogram of
histogram)

I ≈ Poisson distribution with
λ = n̄ = 8

I uneven sampling → larger
stochastic error



QMC point set (2d Sobol samples) :
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quasi−Monte Carlo point set (Sobol) histogram of counts
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Figure: 512 uniform 2d Sobol points

I each square contains same number of points → delta distribution

I even coverage

I less stochastic fluctuations

I simulate effect of higher statistics with much less samples

I in this sense QMC is exactly what we want

I randomisation possible (RQMC) w/o changing properties → practical
error estimation



problem description
lattice action (see “Creutz and Freedman”[CF81]):

S = a
d∑

i=1

(
M0

2

(xi+1 − xi )
2

a2
+
µ2

2
x2
i + λx4

i

)
; xd+1 = x1 (p.b.)

M0 . . . particle mass

µ2 = M0ω
2 . . . frequency/spring constant

a . . . lattice spacing

d . . . number of lattice sites→ T = da . . . time extent

I λ = 0 → harmonic oscillator
I λ > 0 → anharmonic oscillator, µ2 < 0 → double well potential

Anharmonic potential µ2 > 0 Anharmonic potential µ2 < 0

Figure: two cases for the anharmonic potential



observables

primary observables

〈x2〉 = 〈 1

d

∑
i

x2
i 〉 (3)

〈x4〉 = 〈 1

d

∑
i

x4
i 〉 (4)

〈xkxk+j〉 = 〈 1

d

∑
i

xixi+j〉 . . . correlator (5)

derived quantities

E0 = 3λ〈x4〉+ µ2〈x2〉+
µ4

16
(6)

E1 − E0 = energy gap from correlator fit (7)

theoretically known for a→ 0 , T = da→∞ (iterative method)
Blankenbecler, DeGrand and Sugar 1980 [BDS80]



experiment I: harmonic oscillator (λ = 0 , µ2 > 0 )

partition function can be written as multivariate Gaussian integral

Z =

∫
Dx exp

(
−1

2
x tC−1x

)
(8)

C−1 =
2M0

a

(
(1 +

a2µ2

2M0
)δij −

1

2
(δij+1 + δij−1)

)
(9)

covariance matrix: C = SDS t → D = diag(β1, . . . , βd) βi ∈ R+

x = Sw ⇒ Z →
∫
Dw exp

(
−
∑
i

1

2βi
w 2

i

)
(10)

→ sampling algorithm

I generate uniform z ∈ [0, 1]d (pseudo random / QMC )

I wi =
√
βiΦ

−1(zi ), Φ−1 . . . inverse standard normal CDF
I ordering of eigenvalues β1 > β2 > . . . > βd when using QMC
I like ordering of importance z1 > z2 > . . . > zd

I xi = Sijwj ( Hartley transformation, involutive: S = S−1 = S t )



harmonic oscillator results

parameters: µ2 = 2.0 , M0 = 0.5, a = 0.5 & d = 100
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Figure: left: asymptotic error behaviour of MC/QMC, right: fit of QMC error ∼ Nα

I → QMC at work

I trivial, but successful application to physical problem



experiment II: anharmonic oscillator (λ = 1 , µ2 < 0 )

direct sampling not possible because of anharmonic part of the potential
→ do reweighting

Z =

∫
Dx exp

(
−

1

2
x tC−1x − aλ

∑
i

x4
i

)
(11)

C−1 indefinite (µ2 < 0) → define C−1
sim = 2M0

a

(
(1 + µ2sim

a2

2M0
)δij − 1

2

(
δij+1 + δij−1

))
with µ2

sim > 0 , arbitrary insert the “productive 0”

Z =

∫
Dx exp

−
1

2
x tC−1

sim x︸ ︷︷ ︸
sampling

−
1

2
x t(C−1 − C−1

sim )x − aλ
∑
i

x4
i︸ ︷︷ ︸

reweighting

 (12)

=

∫
Dx e−

1
2
xtC−1

sim x W (x) (13)

→ sampling like harmonic oscillator but with C → Csim observable estimation from
samples (x j )j=1,...,N :

〈O〉 ≈
∑

j W (x j )O(x j )∑
j W (x j )

W (x) = e−
1
2
...



numerical results/anharmonic oscillator
parameters: M0 = 0.5 , a = 0.015 , µ2 = −16
fit: ∆O ∼ CNα

O α log C χ2/dof

d = 100 X 2 -0.763(8) 2.0(1) 7.9 / 6
X 4 -0.758(8) 4.0(1) 13.2 / 6
E0 -0.737(9) 4.0(1) 8.3 / 6

d = 1000 X 2 -0.758(14) 2.0(2) 5.0 / 4
X 4 -0.755(14) 4.0(2) 5.7 / 4
E0 -0.737(13) 4.0(2) 4.0 / 4
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( arXiv:1302.6419 , K. Jansen, H. Leovey, A. Ammon, A. Griewank, M. Müller-Preußker, 2013[JLA+13])



energy gap

I asymptotic behaviour of correlator

I non-trivial observable

I not possible to detect on present parameter setup (T too small)

I changed µ2 = −16→ µ2 = −4 ,

I energy gap: 0.0015→ 1.576

result obtained for d = 100, N = 25, 28, 211, 214 and 400 Sobol’ sequences each:

α = −0.735(13)

(Tobias Hartung, 2013, personal communication)



outlook & conclusions

I harmonic oscillator: QMC works perfectly (as expected)

I anharmonic oscillator: significantly improved error scaling → N− 3
4

remaining questions:

I Why do we observe this N− 3
4 behaviour??

I further improvements by generalised choice of Csim?

I other, possibly non-Gaussian, sampling methods

I next step: one-dimensional spin model in cosine discretisation

S [φ] = Ia
∑
i

− 1

a2
cos(φi+1 − φi ) (14)

study χQ (topological susceptibility) and ∆E = E1 − E0 (energy gap)
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