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Introduction

Introduction

Motivation of the work:

» Many interesting physical systems do not have an efficient
numerical algorithms yet.

» An example: QCD at finite density or with a non-vanishing 6
term.

» It is thus of great interest to study novel simulation
algorithms.

In the present work we develop and test a geometric algorithm
which is applicable to the two and three-dimensional
antiferromagnetic Ising model with an imaginary magnetic field i6,
and which solves the sign problem that this model has when using
standard algorithms.
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The Model and the algorithm

Reduced Hamiltonian of the system:

H[{SX}vth]:_F Z SXSy_gZS)m

(x,y)eB
where
» F=J/(kT) — coupling
» h=2B/(kT) — reduced magnetic field

» Q= %ZX sx (from —N2/2 and N?/2) — "topological
charge”

It is then worth studying what happens for imaginary values of the
reduced magnetic field h, i.e., for h = i6.



The Model and the algorithm

weight of a configuration not a positive real number
= "sign problem”

For & = m we can circumvent this problem.

Z(F7 9 = 7'(') = Z eFZ(xy)635x5y+l Z Sz
{sx}, sx==%1

Z H [cosh(F) + sinh(F) sXsy]Hsz,

{sx}, sx==%1(x,y)EB

The terms that contribute to the partition function are those for
which a given spin variable appears an odd number of times.



The Model and the algorithm

Decomposing the lattice in two staggered sublattices we can
rewrite our partition function as

Z(F,0 =7)= Z H [cosh(F) — sinh(F)sys,] Hsz;

{sx}, sx==%1 (x,y)eB

= Z(F,0=mn)=Z(—-F,0=m)atl=m,;

= the terms that survive in this expansion are those with an
even number of terms s;s, .



The Model and the algorithm

Considering the contributions following these rules:

» a factor 2N for the sum over the spins;

» a factor of sinh(|F|)VI?], where A[b] is the number of bonds
for a given configuration;

» a factor cosh(|F|)VIE! where N'[b] = N[B] — N[b] is the
number of inactive bonds;

the partition function becomes:

Z(F,0 = m) = 2" cosh(|F[VIB1 $ tanh(|F )V
beB!

All configurations (" graphs”) positive weights = no sign problem !
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Simulation of the system

Number of links at any site — odd:
» 2D — 1,3 bonds
» 3D — 1,3,5 bonds

The dual lattice sites: 3

+—t
41 x* |2

o — o
1

The state of bond i at the dual lattice site x* is denoted by
Ai(x*), and we set

1 if active

A,'(X*) — {

0 if inactive



Introduction The Model and the algorithm Simulation of the system

We can draw all the admissible configuration, specified by a vector
A(x).

» S(x*) — graphs corresponding to these configurations.

» w(x*) = 31, Ai(x*) — number of active bonds at site x* in
a given configuration.

The key observation is that, as the number of external bonds
touching a vertex is fixed, and the total number of bonds touching
a vertex must be odd, when changing A(x*) we must be sure that
the number of internal bonds that change state, touching a given
vertex, is an even number, i.e., 0 or 2 (or 4 in 3D).



Simulation of the system

See) [ wi) | AG)

0 |(0,0,0,0)
.. 1 |(1,0,0,0)
1 1 |(0,1,0,0)
.. 1 |(0,0,1,0)
l. 1 |(0,0,0,1)
| 2 | (1,1,0,0)
— 2 | (1,0,1,0)
L. 2 |(1,0,0,1)

Active bonds — solid line, inactive bonds — no line.

w(x*) = ZLI Ai(x*) — number of active bonds. .



Simulation of the system

Updating the configurations:

TA(x*) = A(x*
CA(x™) =1— A(x")
where
» 7 — identity

» C — conjugation
The variation Aw(x*) of the number of active bonds is given by

4 4

Aw(x*) = CA(X) = Ai(x™) =Y i —2Ai(x") = 22— w(x")] .
i=1

i=1

To pass to another admissible configuration, we have only two
possibilities: either leave everything unchanged, or change the state
of all the bonds at the given square/dual lattice site (next table).
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Simulation of the system

S(x*) | CS(x*) | Aw(x*)
.. 8 4

2

2

I 0
. = i

Transformation under C
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Simulation of the system

Ergodicity

.1 L

l.
-l .

Reduction: it coincides with the identity if A> = 0, and with
conjugation if A, =1
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Simulation of the system

Open boundary conditions: Ergodicity
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Figure: (Left) Right-most colum after the first step of reduction. (Right)
Two right-most columns after the second step of reduction.
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Simulation of the system

Open boundary conditions: Ergodicity

B —eo
—® —o
e

*—o

| o
—e *—eo
o

Figure: (Left) Right-most colum after the first step of reduction. (Right)
Two right-most columns after the second step of reduction.
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Simulation of the system

Periodic boundary conditions: Ergodicity

N-1 N 1
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Periodic boundary conditions: Ergodicity
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Periodic boundary conditions: Ergodicity
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Simulation of the system

Periodic boundary conditions: Ergodicity
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Simulation of the system

Periodic boundary conditions: Ergodicity

N 1 2 N 1 2 N 1 2 N 1 2
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4 inequivalent reduced configurations in 2D
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Results: Correlation function in the 2D model
C(d,F) = <5X5x+di>

correlation functions
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F=Jl(kT)=-10

correlation functions
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F=Jl(k,T)=-10 F=3l(kyT)=20
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Results is in agreement with B. M. McCoy and T. T. Wu, Phys.
Rev. 155 (1967) 438 T. D. Lee and C. N. Yang, Phys. Rev. 87
(1952) 410, V. Matveev and R. Shrock, J. Phys. A 28 (1995)
4859 and with the mean-field calculation done by V. Azcoiti,

E. Follana, and A. Vaquero, Nucl. Phys. B 851 (2011) 420.
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F=l(kgT)=-10 F=Jl(kT)=20
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Results is in agreement with B. M. McCoy and T. T. Wu, Phys.
Rev. 155 (1967) 438 T. D. Lee and C. N. Yang, Phys. Rev. 87
(1952) 410, V. Matveev and R. Shrock, J. Phys. A 28 (1995)
4859 and with the mean-field calculation done by V. Azcoiti,

E. Follana, and A. Vaquero, Nucl. Phys. B 851 (2011) 420.

» the apparent decrease of C(d, F) is probably due to the
heavy-tailed probability distributions of the correlators
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Probability distributions of the logarithm of the correlators

2D, L=64, F=-0.4 2D, L=64, F=-2.0
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For a low coupling |F| the values are spread in a wider range than
for F = —2.0, and also that a long tail is developed for large
distances.



Results: Correlation function in the 3D model

3D, F=Ji(k,T)=-0.6 3D, F=i(kgT)=-12
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Energy density and Specific Heat
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Conclusions

Conclusions

» We developed, for a model not free from the sign problem, a
new algorithm able to circumvent this obstacle

» We tested successfully for the 2D antiferromagnetic Ising
model and we studied also the 3D version

» The behavior of the correlation function as well the specific
heat are in agreement with the predictions

» No phase transitions for these models at § = 7

» This technique maybe can be applied to study other
interesting models
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