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Introduction: singlet static potential (1)

• The (singlet) static potential V 1 is a very common and important observable
in lattice gauge theory.

• It is the energy of a static antiquark Q̄(x) and a static quark Q(y) in a
colour singlet (i.e. a gauge invariant) orientation as a function of the

separation r ≡ |x− y|.

• The spin of a static quark is irrelevant, i.e. in the following

– no spin indices or γ matrices,

– only spinless colour charges,
Q̄a

A(x) = (Qa,†(x)γ0)A → Qa,†(x),
Qa

A(y) → Qa(y),

where a denotes a colour index and A a spin
index.
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Introduction: singlet static potential (2)

• The singlet static potential for gauge group
SU(N) can be obtained as follows:

(1) Define a trial state

|Φ1〉 ≡ Q̄(x)U(x,y)Q(y)|0〉.

(2) The temporal correlation function of this trial

state simplifies to the well known Wilson loop,

〈Φ1(t2)|Φ
1(t1)〉 = e−2M∆tN

〈

W1(r,∆t)
〉

, ∆t ≡ t2 − t1 > 0.

(3) The singlet static potential V 1 ≡ V 1
0 can be obtained from the

asymptotic exponential behaviour,

〈

W1(r,∆t)
〉

=
∞
∑

n=0

cn exp
(

− V 1
n (r)∆t

)

∆t→∞
∝ exp

(

− V 1(r)∆t
)

V 1(r) = − lim
∆t→∞

〈Ẇ1(r,∆t)〉

〈W1(r,∆t)〉
.
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Colour adjoint static potential (1)

• Goal of this work: compute and interpret the potential of a static antiquark
Q̄(x) and a static quark Q(y) in a colour adjoint (i.e. a gauge variant)

orientation in various gauges as a function of the separation r ≡ |x− y|.

• A colour adjoint orientation of a static antiquark and a static quark can be

obtained by inserting the generators of the colour group T a (e.g. for SU(3),
T a = λa/2), i.e. Q̄T aQ|0〉.

• If the static antiquark and the static quark are separated in space, a
straightforward generalisation is

|ΦT a

〉 ≡ Q̄(x)U(x,x0)T
aU(x0,y)Q(y)|0〉.

• A corresponding definition of the colour adjoint static potential has been
proposed and used in pNRQCD (a framework based on perturbation theory).

[N. Brambilla, A. Pineda, J. Soto and A. Vairo, Rev. Mod. Phys. 77, 1423 (2005) [hep-ph/0410047]]
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Colour adjoint static ... (2)

• We discuss non-perturbative calculations analogous
as for the singlet static potential in various gauges,

〈ΦT a

(t2)|Φ
T a

(t1)〉 = e−2M∆tN
〈

WT a(r,∆t)
〉

,

WT a(r,∆t) ≡
1

N
Tr

(

T aURT
a,†UL

)

〈

WT a(r,∆t)
〉

=
∞
∑

n=0

cn exp
(

− V T a

n (r)∆t
)

∆t→∞
∝ exp

(

− V T a

(r)∆t
)

.

• In particular we are interested,

– whether the colour adjoint static potential V T a

≡ V T a

0 is gauge invariant

(i.e. whether the obvious gauge dependence of the correlation function
〈WT a(r,∆t)〉 only appears in the matrix elements cn),

– whether V T a

indeed corresponds to the potential of a static antiquark
and a static quark in a colour adjoint orientation, or whether it has to be

interpreted differently.
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V T a
without gauge fixing

• Without gauge fixing

〈

WT a(r,∆t)
〉

= 0,

because this correlation function is gauge variant (and does not contain any
gauge invariant contribution).

→ Without gauge fixing the calculation of a colour adjoint static potential fails.

Marc Wagner, Owe Philipsen, “The colour adjoint static potential from Wilson loops with generator insertions and its physical interpretation”, Jul 29, 2013



V T a
in Coulomb gauge

• Coulomb gauge: ∇Ag(x) = 0, which amounts to an independent condition
on every time slice t.

• The remaining residual gauge symmetry corresponds to global independent
colour rotations hres(t) ∈ SU(N) on every time slice t; with respect to this
residual gauge symmetry the colour adjoint Wilson loop transforms as

〈

WT a(r,∆t)
〉

=
1

N
Tr

(

T aURT
a,†UL

)

→hres

→hres

1

N
Tr

(

hres,†(t1)T
ahres(t1)URh

res(t2)T
a,†hres,†(t2)UL

)

.

• Since hres(t1) and hres(t2) are independent, the situation is analogous to that
without gauge fixing, i.e.

〈

WT a(r,∆t)
〉

Coulomb gauge
= 0,

→ In Coulomb gauge the calculation of a colour adjoint static potential fails.
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V T a
in Lorenz gauge

• Lorenz gauge: ∂µA
g
µ(x) = 0.

• In Lorenz gauge a Hamiltonian or a transfer matrix does not exist.

• Only gauge invariant correlation functions like the ordinary Wilson loop
〈W1(r,∆t)〉 exhibit an asymptotic exponential behaviour and, therefore,
allow the determination of energy eigenvalues.

• The colour adjoint Wilson loop 〈WT a(r,∆t)〉Lorenz gauge does not decay
exponentially in the limit of large ∆t.

→ The physical meaning of a colour adjoint static potential determined from
〈WT a(r,∆t)〉Lorenz gauge (as frequently done in perturbation theory) is unclear.
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V T a
in temporal gauge (1)

• Temporal gauge: ∂µA
g
0(x) = 0 or equivalently U g

0 (x) = 1.

• Temporal links gauge transform as

U g
0 (t,x) = g(t,x)U0(t,x)g

†(t+ a,x) , g(t,x) ∈ SU(N).

• A possible choice to implement temporal gauge is

g(t = 2a,x) = U0(t = a,x),

g(t = 3a,x) = g(t = 2a,x)U0(t = 2a,x) = U0(t = a,x)U0(t = 2a,x),

g(t = 4a,x) = g(t = 3a,x)U0(t = 3a,x) = . . . ,

. . . = . . .
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V T a
in temporal gauge (2)

• By inserting the transformation to temporal gauge g(t,x), the gauge variant
colour adjoint Wilson loop turns into a gauge invariant observable:

〈

WT a(r,∆t)
〉

temporal gauge
=

=
1

N

〈

Tr
(

UT a,g(t1;x,y)U
T a,†,g(t2;y,x)

)〉

temporal gauge
= . . . =

=
2

N(N2 − 1)

∑

a

∑

b

〈

Tr
(

T aURT
bUL

)

Tr
(

T aU(t1, t2;x0)T
bU(t2, t1;x0)

)〉

(UT a

(x,y) = U(x,x0)T
aU(x0,y)).

• Tr(T aURT
bUL): Wilson loop with generator insertions.

• Tr(T aU(t1, t2;x0)T
bU(t2, t1;x0)): propagator of a static adjoint quark.

→ The colour adjoint Wilson loop in temporal gauge is a correlation function of
a gauge invariant three-quark state, one fundamental static quark, one
fundamental static anti-quark, one adjoint static quark.
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V T a
in temporal gauge (3)

• Equivalently, after defining

|ΦQQ̄Qad

〉 ≡ Qad,a(x0)(Q̄(x)UT a

(x,y)Q(y))|0〉,

one can verify

〈ΦQQ̄Qad

(t2)|Φ
QQ̄Qad

(t1)〉 ∝
〈

WT a(r,∆t)
〉

temporal gauge
.

→ V T a

in temporal gauge should not be interpreted as the potential of a static
quark and a static anti-quark, which form a colour-adjoint state.

→ V T a

in temporal gauge is the potential of a colour-singlet three-quark state.

→ V T a

in temporal gauge does not only depend on the QQ̄ separation

r = |x− y|, but also on the position s = |x− x0|/2− |y − x0|/2 of the
static adjoint quark Qad, i.e. V T a

(r, s) (in the following we work with the

symmetric alignment x0 = (x+ y)/2).
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V T a
in temporal gauge (4)

• A different approach, leading to the same result, is the transfer matrix
formalism.

[O. Jahn and O. Philipsen, Phys. Rev. D 70, 074504 (2004) [hep-lat/0407042]]
[O. Philipsen, Nucl. Phys. B 628, 167 (2002) [hep-lat/0112047]]

• One can perform a spectral analysis of the colour adjoint Wilson loop:

〈

WT a(r,∆t)
〉

temporal gauge
=

1

N

∑

k

e−(V Ta

k (r)−E0)∆t
∑

α,β

∣

∣

∣
〈kaαβ|U

T a

αβ (x,y)|0〉
∣

∣

∣

2

,

where |kaαβ〉 denotes states containing three static quarks (one fundamental

static quark, one fundamental static anti-quark, one adjoint static quark).

→ Again the conclusion is that V T a

in temporal gauge is the potential of a

colour-singlet three-quark state.
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A gauge invariant definition via B fields?

• In the literature one can also find a proposal of a gauge invariant quantity,
from which the colour adjoint static potential can possibly be determined,

WB(r,∆t) ≡
1

N
Tr

(

T aURT
b,†UL

)

Ba(x0, t1)B
b(x0, t2),

i.e. open colour indices are saturated by colour magnetic fields.

[N. Brambilla, A. Pineda, J. Soto and A. Vairo, Rev. Mod. Phys. 77, 1423 (2005) [hep-ph/0410047]]

• However, using the transfer matrix formalism one can again perform a
spectral analysis and show that only states with a fundamental quark and a

fundamental antiquark |kαβ〉 (i.e. singlet static potentials) contribute to the
correlation function:

〈

WB(r,∆t)
〉

=
∑

k

e−(V 1,−
k (r)−E0)∆t

∑

α,β

∣

∣

∣
〈kαβ|U

T aBa

αβ (x,y)|0〉
∣

∣

∣

2

.

→ 〈WB(r,∆t)〉 is not suited to extract a colour adjoint static potential.
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Numerical lattice results for SU(2)

• SU(2) colour group, four different lattice spacings a = 0.038 fm . . . 0.102 fm.

• In temporal gauge the colour adjoint (or rather QQ̄Qad) static potential V T a

is attractive,

– for small separations stronger than the singlet static potential V 1,

– for large separations the slope is the same as for the singlet static
potential V 1 (indicates flux tube formation between QQad and Q̄Qad).
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LO perturbative calculations (1)

• Perturbation theory for static potentials is a good approximation for small
quark separations and should agree in that region with corresponding

non-perturbative results.

• Singlet static potential (gauge invariant, i.e. the gauge is not important):

V 1(r) = −
(N2 − 1)g2

8Nπr
+ const +O(g4).

• Colour adjoint static potential (in Lorenz gauge):

V T a

(r) = +
g2

8Nπr
+ const +O(g4).

– In Lorenz gauge a Hamiltonian or a transfer matrix does not exist, i.e.

the physical meaning is unclear; appears frequently in the literature.

– The repulsive behaviour is not reproduced by any of the presented
non-perturbative considerations or computations.
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LO perturbative calculations (2)

• Colour adjoint static potential (“in temporal gauge”; more precisely:
perturbative calculation in Lorenz gauge of the gauge invariant observable,

which is equivalent to the colour adjoint Wilson loop in temporal gauge):

V QQ̄Qad

(r, s = 0) = −
(4N2 − 1)g2

8Nπr
+ const +O(g4).

– Attractive and stronger by a factor 4 . . . 5 than the singlet static
potential (depending on N).

– Qualitative agreement with numerical lattice results for SU(2).
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Conclusions

• We have discussed the non-perturbative definition of a static potential V T a

for a quark antiquark pair in a colour adjoint orientation, based on Wilson
loops with generator insertions 〈WT a(r,∆t)〉 in various gauges:

– Without gauge fixing/Coulomb gauge: 〈WT a(r,∆t)〉 = 0, i.e. the
calculation of a potential V T a

fails.

– Lorenz gauge: a Hamiltonian or a transfer matrix does not exist, the

physical meaning of a corresponding potential V T a

is unclear.

– Temporal gauge: a strongly attractive potential V T a

, which should be

interpreted as the potential of three quarks, i.e. V T a

= V QQ̄Qad

.

Clearly the resulting potential V T a

is gauge dependent.

• Saturating open colour indices with Ba, yields a singlet static potential.

• LO perturbation theory in Lorenz gauge has long predicted V T a

to be

repulsive; it appears impossible, to reproduce this repulsive behaviour by a
non-perturbative computation based on Wilson loops.
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