Preliminary results from maximally twisted mass lattice QCD at the physical point

A. Abdel-Rehim, P. Boucaud, N. Carrasco, A. Deuzeman, P. Dimopoulos, R. Frezzotti, G. Herdoiza, K. Jansen, <u>B. Kostrzewa</u>, M. Mangin-Brinet, I. Montvay, D. Palao, G.C. Rossi, F. Sanfilippo, L. Scorzatto, A. Shindler, C. Urbach, U. Wenger

> Humboldt-Universität zu Berlin DESY, Zeuthen Site Supported in full by FNR AFR PhD grant 2773315

Lattice 2013, Mainz – 2nd August 2013

B. Kostrzewa (bartosz.kostrzewa@desy.de) Preliminary mtmLQCD @ the phys. point

Overview

Introduction

- 2 Tuning and Stability
- 3 First results
- 4 Path to $N_f = 2 + 1 + 1$
- **5** Conclusion and Outlook

Introduction

Action

Requirements

- Physical point with $a \sim 0.1 {
 m fm} \leftrightarrow$ reasonable computing resources
- Stable simulation and controlled $O(a^2)$ cutoff effects \leftrightarrow pion splitting
- Maintain all nice properties of tmLQCD

Twisted mass action:

[Frezzotti, Grassi, Sint, Weisz, 2000; Frezzotti, Rossi; 2004]

$$S = \beta \sum_{x;P} \left[b_0 \{ 1 - \frac{1}{3} \operatorname{ReTr} P^{1 \times 1}(x) \} + b_1 \{ 1 - \frac{1}{3} \operatorname{ReTr} P^{1 \times 2}(x) \} \right] \\ + \sum_x \overline{\chi}(x) \left[D_W(U) + m_0 + i\mu\gamma^5\tau^3 + \frac{i}{4}C_{SW}\sigma^{\mu\nu}\mathcal{F}^{\mu\nu}(U) \right] \chi(x)$$

•
$$N_f = 2$$

•
$$b_0 = 1 - 8b_1$$
, $b_1 = -0.331$ [Iwasaki; 1983]

• $C_{SW} = 1.57551$ from Padé fit of CP-PACS data

[Aoki et al.; Phys.Rev. D73 (2006) 034501]

Introduction

Run Details

L/a	48
T/a	96
β	2.10
b_1	-0.331
κ	0.13729
$a\mu_I$	0.0009
C_{SW}	1.57551
N _{traj}	> 1500
< P >	0.603531(6)
$\tau_{int}(< P >)$	10.0(3.5)
am _{PCAC}	0.00004(2)
$m_{\pi}L$	3.00(2)
а	0.91(5) fm ^a

^avery preliminary: large uncertainty to accomodate possible FS / discretization effects B. Kostrzewa (bartosz.kostrzewa@desy.de) Prelim

- Substantial updates to tmLQCD software suite:
 - BG/Q optimizations
 - OpenMP
 - Clover term with EO pre-conditioning and twisted mass
 - RHMC implementation
- Details: Carsten Urbach, Parallels 9G, Friday 14:40
- O(10) exploratory runs on $24^3 \times 48$
- 2 (short) tuning runs on target volume
- Production runs on BG/Q in Juelich, replica on SuperMUC

Tuning and Stability

Tuning to maximal twist at small quark mass and coarse lattice spacing

- $N_f = 2 + 1 + 1$ tlSym action \rightarrow remnant signs of 1st order phase-trans.
- Iwasaki gauge action, situation much improved but trouble with $N_f = 4$
- Clover term + Iwasaki → very fine tuning possible, linear behaviour in 1/2κ, no metastabilities

Tuning and Stability

Monte Carlo histories

- 2nd order minimal norm integrator on four timescales
- four Hasenbusch mass shifts, lightest two on same timescale
- $\tau = 1.0$ trajectory length, 75% acceptance for efficiency

Neutral connected pion splitting

- Indications that W'_8 is reduced markedly \rightarrow stable simulations, particular $O(a^2)$ effects under control
- Measurement of full pion splitting in progress \rightarrow obtain estimate of c_2

Pion decay constant

Heavy-light meson sector then and now

Heavy-light meson sector then and now

Heavy-light meson sector then and now

Heavy-light meson sector then and now

B. Kostrzewa (bartosz.kostrzewa@desy.de) Preliminary mtmLQCD @ the phys. point

RI-MOM Renormalization constants

	new $N_f = 2$	$N_f = 2$	$N_f = 2 + 1 + 1$
RC	$eta=$ 2.10($C_{\sf SW}$) 1	$\beta = 3.90$	eta= 1.95
Z _A	0.805(05)	0.730(03)	0.746(05)
Z_V	0.762(04)	0.634(03)	0.614(03)
Z_P/Z_S	0.805(34)	0.669(08)	0.700(08)

- Renormalization constants closer to 1
- Goldstone boson pole subtraction in Z_P effective
- Z-factors also available from momentum sources
 - M. Constantinou, Parallels 3B, Tuesday 15:40

 $^{1}24^{3} \times 48$, $a\mu_{sea} = 0.0060$, $a\mu_{val} = 0.0050 - 0.0090$, no sea quark chiral limit yet!

Comparison to experimental values

- $Q_{\text{lat}} \div Q_{\text{phys}}$ for example: $Q_{\text{lat}} = \frac{m_{\pi}^{\text{phys}}}{f_{\pi}^{\text{lat}}} \quad Q_{\text{phys}} = \frac{m_{\pi}^{\text{phys}}}{f_{\pi}^{\text{phys}}}$
- \bullet Tuning strange and charm quark mass \sim PDG quark mass ratios

Path to $N_f = 2 + 1 + 1$

Preliminaries

Tuning C_{SW}

- No existing NP study of C_{SW} for $N_f = 2 + 1 + 1$
- For $N_f=2$, discrepancy between Padé and direct approach $\sim 10\%$
 - * Full determination of C_{SW} has $O(a\Lambda_{QCD})$ systematic uncertainty
 - $\star~10\%$ accuracy should be sufficient
 - \Rightarrow use simple algorithm to obtain tadpole improved value (next slide)

• Idea: If simulation stable for $N_f = 2_I + 2_s$ \Rightarrow also stable for $N_f = 4$ and $N_f = 2 + 1 + 1$

Path to $N_f = 2 + 1 + 1$

Tuning C_{SW}

• Use simple approximate formula at some bare coupling g_0 :

$$C_{\rm SW} \sim 1 + 0.113(3) \frac{g_0^2}{< P > 0}$$

[Sheikoleslami, Wohlert; 1985]

- **1** Start with $C_{SW} = N_f$ -independent 1-loop value
- Simulate at zero twisted mass, neg./pos. Wilson quark masses bracketing $m_{PCAC} = 0$
- **(3)** Linearly interpolate < P > at $m_{PCAC} = 0$
- Use formula to get better estimate of C_{SW}
- Seperat (1) with new estimate as starting value
- 6 Stop when change is less than 3%

Conclusion and Outlook

- Shown feasibility of mtmLQCD simulations at physical point
- All preliminary measurements look promising
- Indications of better $O(a^2)$ behaviour from connected pion splitting and lack of metastabilities
- First $N_f = 4$ and $N_f = 2 + 2$ runs started, m_{PCAC} quite linear in $\frac{1}{2\kappa}$
- Tuning C_{SW} for $N_f = 2 + 1 + 1$ using tadpole improved formula
- Extension to $N_f = 2 + 1 + 1$ outlined and first steps taken
 - Results suggest no problems with plan
- Continuation of rich ETMC physics programme at the physical point
 - \Rightarrow nucleon: C. Alexandrou, Parallels 3B, Tuesday 15:00
 - \Rightarrow nucleon: M. Constantinou, Parallels 3B, Tuesday 15:40
 - \Rightarrow muon g-2: G. Hotzel, Parallels 9B, Friday 14:20