Excited States from the Stochastic LapH Method

Colin Morningstar

Carnegie Mellon University

31st International Symposium on Lattice Field Theory

Mainz, Germany

July 29, 2013

Outline

- goals
 - comprehensive survey of energy spectrum of QCD stationary states in a finite volume
 - hadron scattering phase shifts, decay widths, matrix elements
- extracting excited-state energies
- single-hadron operators
- multi-hadron operators
- the stochastic LapH method
- first results in ρ -channel: I = 1, S = 0, $T_{1\mu}^+$
 - used 56×56 matrix of correlators
 - 12 single-hadron operators
 - 17 "ππ" operators
 - 14 " $\eta\pi$ " operators, 3 " $\phi\pi$ " operators
 - 10 "KK" operators
- preliminary results using 59 × 59 matrix of correlators in the bosonic $I = \frac{1}{2}$, S = 1, T_{1u}

Dramatis Personae

Brendan Fahy CMU

You-Cyuan Jhang CMU

David Lenkner CMU

C. Morningstar CMU

John Bulava Trinity, Dublin

Justin Foley U Utah

Jimmy Juge U Pacific, Stockton

Ricky Wong UC San Diego

- Thanks to NSF Teragrid/XSEDE:
 - Athena+Kraken at NICS
 - Ranger+Stampede at TACC

Excited states from correlation matrices

- extract excited energies from matrices of temporal correlations
- $N \times N$ Hermitian correlation matrix $C_{ij}(t_F t_0) = \langle 0 | O_i(t_F) \overline{O}_j(t_0) | 0 \rangle$
- *N* principal correlators $\lambda_{\alpha}(t, \tau_0)$ are eigenvalues of

 $C(\tau_0)^{-1/2} C(t) C(\tau_0)^{-1/2}$

- large time separation: $\lim_{t\to\infty} \lambda_{\alpha}(t,\tau_0) = e^{-(t-\tau_0)E_{\alpha}}$
- N principal effective masses

$$m_{\alpha}^{\text{eff}}(t) = \ln\left(rac{\lambda_{\alpha}(t,\tau_0)}{\lambda_{\alpha}(t+1,\tau_0)}
ight)$$

tend to N lowest-lying stationary state energies in a channel

- extracting energy of level α requires careful consideration of all lower-lying and nearby levels
 - multi-hadron states below most resonances

Quantum numbers in toroidal box

- periodic boundary conditions in cubic box
 - not all directions equivalent ⇒ using J^{PC} is wrong!!

- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
 - zero momentum states: little group Oh

 $A_{1a}, A_{2ga}, E_a, T_{1a}, T_{2a}, G_{1a}, G_{2a}, H_a, a = g, h$ • on-axis momenta: little group $C_{4\nu}$

 $A_1,A_2,B_1,B_2,E,\quad G_1,G_2$

• planar-diagonal momenta: little group $C_{2\nu}$

 $A_1,A_2,B_1,B_2,\quad G_1,G_2$

• cubic-diagonal momenta: little group $C_{3\nu}$

 $A_1, A_2, E, \quad F_1, F_2, G$

● include G parity in some meson sectors (superscript + or −)

C. Morningstar

Building blocks for single-hadron operators

- building blocks: covariantly-displaced LapH-smeared quark fields
- stout links $\widetilde{U}_j(x)$
- Laplacian-Heaviside (LapH) smeared quark fields

 $\widetilde{\psi}_{a\alpha}(x) = \mathcal{S}_{ab}(x, y) \ \psi_{b\alpha}(y), \qquad \mathcal{S} = \Theta\left(\sigma_s^2 + \widetilde{\Delta}\right)$

- 3d gauge-covariant Laplacian $\widetilde{\Delta}$ in terms of \widetilde{U}
- displaced quark fields:

$$q^A_{a\alpha j} = D^{(j)} \widetilde{\psi}^{(A)}_{a\alpha}, \qquad \overline{q}^A_{a\alpha j} = \overline{\widetilde{\psi}}^{(A)}_{a\alpha} \gamma_4 D^{(j)}$$

• displacement D^(j) is product of smeared links:

 $D^{(j)}(x,x') = \widetilde{U}_{j_1}(x) \ \widetilde{U}_{j_2}(x+d_2) \ \widetilde{U}_{j_3}(x+d_3) \dots \widetilde{U}_{j_p}(x+d_p) \delta_{x', \ x+d_{p+1}}$

to good approximation, LapH smearing operator is

 $S = V_s V_s^{\dagger}$

• columns of matrix V_s are eigenvectors of $\widetilde{\Delta}$

Extended operators for single hadrons

• quark displacements build up orbital, radial structure

C. Morningstar

Ensembles and run parameters

- plan to use three Monte Carlo ensembles
 - $(32^3|240)$: 412 configs $32^3 \times 256$, $m_\pi \approx 240$ MeV, $m_\pi L \sim 4.4$
 - $(24^3|240)$: 584 configs $24^3 \times 128$, $m_\pi \approx 240$ MeV, $m_\pi L \sim 3.3$
 - $(24^3|390)$: 551 configs $24^3 \times 128$, $m_\pi \approx 390$ MeV, $m_\pi L \sim 5.7$
- anisotropic improved gluon action, clover quarks (stout links)
- QCD coupling $\beta = 1.5$ such that $a_s \sim 0.12$ fm, $a_t \sim 0.035$ fm
- strange quark mass $m_s = -0.0743$ nearly physical (using kaon)
- work in $m_u = m_d$ limit so SU(2) isospin exact
- generated using RHMC, configs separated by 20 trajectories
- stout-link smearing in operators $\xi = 0.10$ and $n_{\xi} = 10$
- LapH smearing cutoff $\sigma_s^2 = 0.33$ such that
 - $N_{\nu} = 112$ for 24^3 lattices
 - $N_{\nu} = 264$ for 32^3 lattices
- source times:
 - 4 widely-separated t₀ values on 24³
 - 8 t₀ values used on 32³ lattice

C. Morningstar

Testing single-hadron operators

• meson effective masses on (24³|390) ensemble

8

Testing single-hadron operators (con't)

- (left and center) pion energies on (32³|240) ensemble
- (right) nucleon and Δ baryons

Isovector meson spectrum: a first glance

- first glance at isovector meson spectrum
- single-hadron operators only, 170 configs of (24³|390) ensemble
- shaded region shows where multi-hadron states possible

• multi-hadron operators could be crucial!!

C. Morningstar

Two-hadron operators

 our approach: superposition of products of single-hadron operators of definite momenta

 $c_{p_a\lambda_a; p_b\lambda_b}^{I_3I_{3a}S_a} B_{p_a\Lambda_a\lambda_ai_a}^{I_bI_{3b}S_b} B_{p_b\Lambda_b\lambda_bi_b}^{I_aI_{3a}S_a}$

- fixed total momentum $\boldsymbol{p} = \boldsymbol{p}_a + \boldsymbol{p}_b$, fixed $\Lambda_a, i_a, \Lambda_b, i_b$
- group-theory projections onto little group of p and isospin irreps
- restrict attention to certain classes of momentum directions
 - on axis $\pm \hat{x}$, $\pm \hat{y}$, $\pm \hat{z}$
 - planar diagonal $\pm \widehat{x} \pm \widehat{y}, \ \pm \widehat{x} \pm \widehat{z}, \ \pm \widehat{y} \pm \widehat{z}$
 - cubic diagonal $\pm \widehat{x} \pm \widehat{y} \pm \widehat{z}$
- crucial to know and fix all phases of single-hadron operators for all momenta
 - each class, choose reference direction p_{ref}
 - each p, select one reference rotation R_{ref}^{p} that transforms p_{ref} into p
- efficient creating large numbers of two-hadron operators
- generalizes to three, four, ... hadron operators

Testing our two-meson operators

- (left) $K\pi$ operator in $T_{1u} I = \frac{1}{2}$ channels
- (center and right) comparison with localized $\pi\pi$ operators

 $\begin{aligned} &(\pi\pi)^{A_{1g}^+}(t) &= \sum_{\mathbf{x}} \pi^+(\mathbf{x},t) \ \pi^+(\mathbf{x},t), \\ &(\pi\pi)^{T_{1u}^+}(t) &= \sum_{\mathbf{x},k=1,2,3} \Big\{ \pi^+(\mathbf{x},t) \ \Delta_k \pi^0(\mathbf{x},t) - \pi^0(\mathbf{x},t) \ \Delta_k \pi^+(\mathbf{x},t) \Big\} \end{aligned}$

• less contamination from higher states in our $\pi\pi$ operators

Quark line diagrams

- temporal correlations involving our two-hadron operators need
 - slice-to-slice quark lines (from all spatial sites on a time slice to all spatial sites on another time slice)
 - sink-to-sink quark lines

isoscalar mesons also require sink-to-sink quark lines

solution: the stochastic LapH method!

C. Morningstar

Stochastic estimation of quark propagators

- do not need exact inverse of Dirac matrix *K*[*U*]
- use noise vectors η satisfying $E(\eta_i) = 0$ and $E(\eta_i \eta_i^*) = \delta_{ij}$
- Z_4 noise is used $\{1, i, -1, -i\}$
- solve $K[U]X^{(r)} = \eta^{(r)}$ for each of N_R noise vectors $\eta^{(r)}$, then obtain a Monte Carlo estimate of all elements of K^{-1}

$$K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} X_i^{(r)} \eta_j^{(r)*}$$

- variance reduction using noise dilution
- dilution introduces projectors

$$\begin{split} P^{(a)}P^{(b)} &= \delta^{ab}P^{(a)}, \qquad \sum_{a}P^{(a)} = 1, \qquad P^{(a)\dagger} = P^{(a)} \\ \bullet \mbox{ define } & \eta^{[a]} = P^{(a)}\eta, \qquad X^{[a]} = K^{-1}\eta^{[a]} \end{split}$$

to obtain Monte Carlo estimate with drastically reduced variance

$$K_{ij}^{-1} \approx \frac{1}{N_R} \sum_{r=1}^{N_R} \sum_{a} X_i^{(r)[a]} \eta_j^{(r)[a]*}$$

C. Morningstar

Excited States

14

Stochastic LapH method

• introduce Z_N noise in the LapH subspace

 $\rho_{\alpha k}(t), \quad t = time, \ \alpha = spin, \ k = eigenvector number$

four dilution schemes:

 $\begin{array}{ll} P_{ij}^{(a)} = \delta_{ij} & a = 0 & (\text{none}) \\ P_{ij}^{(a)} = \delta_{ij}\delta_{ai} & a = 0, 1, \dots, N-1 & (\text{full}) \\ P_{ij}^{(a)} = \delta_{ij}\delta_{a,Ki/N} & a = 0, 1, \dots, K-1 & (\text{interlace-}K) \\ P_{ij}^{(a)} = \delta_{ij}\delta_{a,i \mod k} & a = 0, 1, \dots, K-1 & (\text{block-}K) \end{array}$

- apply dilutions to
 - time indices (full for fixed src, interlace-16 for relative src)
 - spin indices (full)
 - LapH eigenvector indices (interlace-8 mesons, interlace-4 baryons)

Quark line estimates in stochastic LapH

each of our quark lines is the product of matrices

 $\mathcal{Q} = D^{(j)} \mathcal{S} K^{-1} \gamma_4 \mathcal{S} D^{(k)\dagger}$

• displaced-smeared-diluted quark source and quark sink vectors:

$$\begin{aligned} \varrho^{[b]}(\rho) &= D^{(j)} V_s P^{(b)} \rho \\ \varphi^{[b]}(\rho) &= D^{(j)} \mathcal{S} K^{-1} \gamma_4 V_s P^{(b)} \rho \end{aligned}$$

 estimate in stochastic LapH by (A, B flavor, u, v compound: space, time, color, spin, displacement type)

$$\mathcal{Q}_{uv}^{(AB)} \approx \frac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_b \varphi_u^{[b]}(\rho^r) \ \varrho_v^{[b]}(\rho^r)^*$$

• occasionally use γ_5 -Hermiticity to switch source and sink

$$\mathcal{Q}_{uv}^{(AB)} \approx \frac{1}{N_R} \delta_{AB} \sum_{r=1}^{N_R} \sum_{b} \overline{\varrho}_u^{[b]}(\rho^r) \ \overline{\varphi}_v^{[b]}(\rho^r)^*$$

defining $\overline{\varrho}(\rho) = -\gamma_5 \gamma_4 \varrho(\rho)$ and $\overline{\varphi}(\rho) = \gamma_5 \gamma_4 \varphi(\rho)$

C. Morningstar

Source-sink factorization in stochastic LapH

baryon correlator has form

$$C_{l\bar{l}} = c_{ijk}^{(l)} c_{\bar{i}\bar{j}\bar{k}}^{(\bar{l})*} \mathcal{Q}_{l\bar{i}}^{A} \mathcal{Q}_{j\bar{j}}^{B} \mathcal{Q}_{k\bar{k}}^{C}$$

stochastic estimate with dilution

$$C_{l\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} c_{ijk}^{(l)} c_{\bar{i}\bar{j}\bar{k}}^{(\bar{l})*} \left(\varphi_i^{(Ar)[d_A]} \varrho_{\bar{l}}^{(Ar)[d_A]*}\right) \\ \times \left(\varphi_j^{(Br)[d_B]} \varrho_{\bar{j}}^{(Br)[d_B]*}\right) \left(\varphi_k^{(Cr)[d_C]} \varrho_{\bar{k}}^{(Cr)[d_C]*}\right)$$

• define baryon source and sink

$$\begin{array}{lll} \mathcal{B}_{l}^{(r)[d_{A}d_{B}d_{C}]}(\varphi^{A},\varphi^{B},\varphi^{C}) & = & c_{ijk}^{(l)} \; \varphi_{i}^{(Ar)[d_{A}]} \varphi_{j}^{(Br)[d_{B}]} \varphi_{k}^{(Cr)[d_{C}]} \\ \mathcal{B}_{l}^{(r)[d_{A}d_{B}d_{C}]}(\varrho^{A},\varrho^{B},\varrho^{C}) & = & c_{ijk}^{(l)} \; \varrho_{i}^{(Ar)[d_{A}]} \varrho_{j}^{(Br)[d_{B}]} \varrho_{k}^{(Cr)[d_{C}]} \\ \end{array}$$

correlator is dot product of source vector with sink vector

$$C_{l\bar{l}} \approx \frac{1}{N_R} \sum_{r} \sum_{d_A d_B d_C} \mathcal{B}_l^{(r)[d_A d_B d_C]}(\varphi^A, \varphi^B, \varphi^C) \mathcal{B}_{\bar{l}}^{(r)[d_A d_B d_C]}(\varrho^A, \varrho^B, \varrho^C)^*$$

C. Morningstar

Correlators and quark line diagrams

baryon correlator

$$\begin{split} C_{l\bar{l}} &\approx \frac{1}{N_R} \sum_{r} \sum_{\substack{d_A d_B d_C \\ d_A d_B d_C}} \mathcal{B}_l^{(r)[d_A d_B d_C]}(\varphi^A, \varphi^B, \varphi^C) \mathcal{B}_{\bar{l}}^{(r)[d_A d_B d_C]}(\varrho^A, \varrho^B, \varrho^C)^* \\ \bullet \text{ express diagrammatically} \end{split}$$

meson correlator

C. Morningstar

More complicated correlators

• two-meson to two-meson correlators (non isoscalar mesons)

C. Morningstar

First results

- first part of summer spent testing last_laph software
 - testing of all flavor channels for single and two-mesons completed
 - comparison of results from last_laph with independent code
 - myriad of orthgonality tests
- first focus on the resonance-rich ρ -channel: $I = 1, S = 0, T_{1\mu}^+$
- experiment: $\rho(770)$, $\rho(1450)$, $\rho(1570)$, $\rho_3(1690)$, $\rho(1700)$
 - interpretation of these states still controversial
- first results: 56×56 matrix of correlators (24^3 |390) ensemble
 - 12 single-hadron (quark-antiquark) operators
 - 17 "ππ" operators
 - 14 " $\eta\pi$ " operators, 3 " $\phi\pi$ " operators
 - 10 "KK" operators
- our results are only weeks old!
- good condition number, diagonalization using $\tau_0 = 4$
- still finalizing analysis code

"principal" effective masses

C. Morningstar

more "principal" effective masses

C. Morningstar

even more "principal" effective masses

C. Morningstar

• spectrum discrete so two-point functions have form $C_{ij}(t) = \sum_{n} Z_{i}^{(n)} Z_{i}^{(n)*} e^{-E_{n}t}$

• preliminary estimates of Z overlaps for various operators:

C. Morningstar

Issues

- next challenge: identifying the levels
- must address presence of 3 and 4 meson states
- must address scalar particles in spectrum
 - vacuum subtractions
 - neglect due to OZI suppression?

- also have results for the kaon channel: $I = \frac{1}{2}$, S = 1, T_{1u}
- experiment: $K^*(892)$, $K^*(1410)$, $K^*(1680)$, $K^*_3(1780)$
- first results: 59×59 matrix of correlators ($24^3|390$) ensemble
 - 10 single-hadron (quark-antiquark) operators
 - 25 "Kπ" operators
 - 12 " $K\eta$ " operators, 12 " $K\phi$ " operators

"principal" effective masses

C. Morningstar

more "principal" effective masses

C. Morningstar

even more "principal" effective masses

C. Morningstar

• preliminary estimates of Z overlaps for various operators:

Conclusion and future work

- goal: comprehensive survey of energy spectrum of QCD stationary states in a finite volume
- stochastic LapH method works very well
 - allows evaluation of all needed quark-line diagrams
 - source-sink factorization facilitates large number of operators
 - last_laph software completed for evaluating correlators
- showed first results in ρ -channel: I = 1, S = 0, T_{1u}^+ using 56×56 matrix of correlators
- preliminary results using 59 × 59 matrix of correlators in the bosonic $I = \frac{1}{2}$, S = 1, T_{1u}
- Iarge number of channels to study over the next year!
- first peek: results on (32³|240) ensemble look even better so far!!
- investigations of various scattering phase shifts also planned for near future

References

- S. Basak et al., Group-theoretical construction of extended baryon operators in lattice QCD, Phys. Rev. D 72, 094506 (2005).
- S. Basak et al., *Lattice QCD determination of patterns of excited baryon states*, Phys. Rev. D **76**, 074504 (2007).
- C. Morningstar et al., Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD, Phys. Rev. D 83, 114505 (2011).
- C. Morningstar et al., *Extended hadron and two-hadron operators of definite momentum for spectrum calculations in lattice QCD*, Phys. Rev. D **88**, 014511 (2013).