

Christian Schmidt

Universität Bielefeld

We use up to fourth order cumulants of net strangeness fluctuations and their correlations with net baryon number fluctuations to extract information

- on the strange meson and baryon contribution to the low temperature hadron resonance gas,
- on the dissolution of strange hadronic states in the crossover region of the QCD transition,
- on the quasi-particle nature of strange quark contributions to the high temperature quark-gluon plasma phase.

$$T \lesssim T_c$$

$$T_c \lesssim T \lesssim 1.3 T_c$$

$$T\gtrsim 1.3T_c$$

$$T_c :=$$
 chiral crossover temperature

Outline

1) Introduction

- Definitions of cumulants and correlations
- Motivations to study fluctuations of conserved charges

2) The lattice setup and results

- The HISQ action
- 4th order fluctuations and correlations

3) A closer look to strangeness

- Strangeness in the HRG model
- Disentangling different strangeness sectors

4) Summary

based on BNL-BI: arXiv:1304.7220

BNL-Bielefeld Collaboration:

A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E. Laermann,

S. Mukherjee, P. Petreczky, C. Schmidt, D. Smith, W. Soeldner, M. Wagner

Generalized Susceptibilites / Cumulants

Expansion of the pressure:

$$rac{p}{T^4} = \sum_{i,j,k=0}^{\infty} rac{1}{i!j!k!} \chi_{ijk,0}^{BQS} igg(rac{\mu_B}{T}igg)^i \left(rac{\mu_Q}{T}
ight)^j \left(rac{\mu_S}{T}
ight)^k$$

Lattice

$$\chi_{n,0}^X = \left. \frac{1}{VT} \frac{\partial^n \ln Z}{\partial (\mu_X/T)^n} \right|_{\mu_X=0}$$

generalized susceptibilities

$$\Rightarrow$$
 only at $\mu_X=0$!

X=B,Q,S: conserved charges

Experiment

$$egin{aligned} \chi_{n,0}^{X} &= \left. rac{1}{VT} rac{\partial^{n} \ln Z}{\partial (\mu_{X}/T)^{n}}
ight|_{\mu_{X}=0} \end{aligned} egin{aligned} VT^{3} \chi_{2}^{X} &= \left. \left< (\delta N_{X})^{2}
ight> \ VT^{3} \chi_{4}^{X} &= \left. \left< (\delta N_{X})^{4}
ight> - 3 \left< (\delta N_{X})^{2}
ight>^{2} \ VT^{3} \chi_{6}^{X} &= \left. \left< (\delta N_{X})^{6}
ight> \ -15 \left< (\delta N_{X})^{4}
ight> \left< (\delta N_{X})^{2}
ight>^{2} \ +30 \left< (\delta N_{X})^{2}
ight>^{3} \end{aligned}$$

cumulants of net-charge fluctuations

$$\delta N_X \equiv N_X - \langle N_X \rangle$$

 \Rightarrow only at freeze-out $(\mu_f(\sqrt{s}), T_f(\sqrt{s}))!$

ratios of cumulants are volume independent!

Motivations

1) Discover a critical point (if exists)

- Analyze Taylor series/Pade resummations of various susceptiblities: find region of large fluctuations
- Analyze the radius of convergence directly

2) Analyze freeze-out conditions

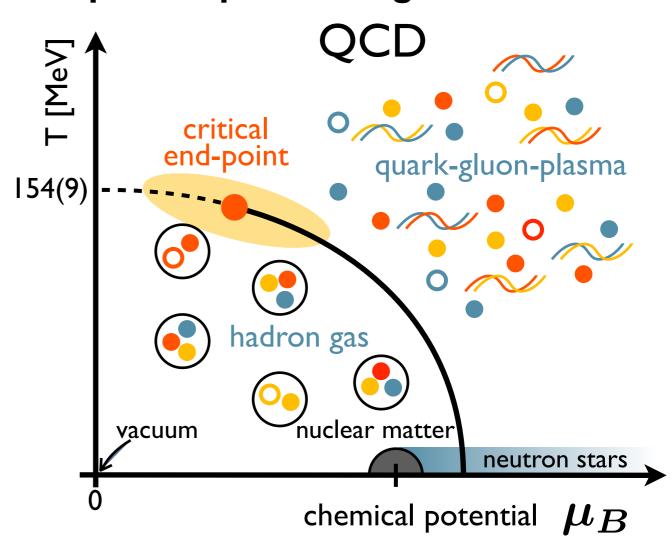
 Match various cumulant ratios of measured electric charge fluctuations to (lattice) QCD results: determine freeze-out parameters.

→ see talk by M. Wagner

3) Identify the relevant degrees of freedom (this talk)

 Compare (lattice) QCD fluctuations to various hadronic/quasiparticle models:

Expected phase diagram of QCD:



Does deconfinement take place above the chiral crossover temperature?

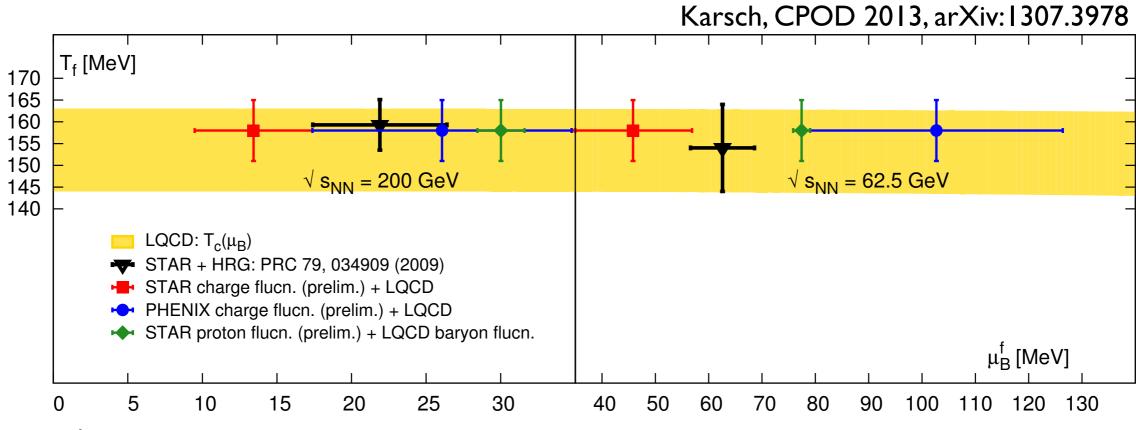
Motivations

Does deconfinement take place above the chiral crossover temperature?

The chiral crossover line:

$$T_c=154(9)~{
m MeV}$$
HotQCD, PRD 85 (2012) 054503

$$T_c(\mu_B) = T_c(0) \left[1 - 0.0066(7) \mu_B^2
ight]$$
 BNL-BI, PRD 83 (2011) 014504



- ⇒ freeze-out points are in agreement with the chiral crossover line
- ⇒ apparent discrepancies among the freeze-out points that need to be resolved

The Lattice Setup

Action: highly improved staggered quarks (HISQ)

Lattice size: $24^3 \times 6$, $32^3 \times 8$, $48^3 \times 12$

Mass: $m_q = m_s/20 \, \longrightarrow \, m_\pi \approx 160 \; {
m MeV}$

Statistics: $O(10^3) - O(10^4)$

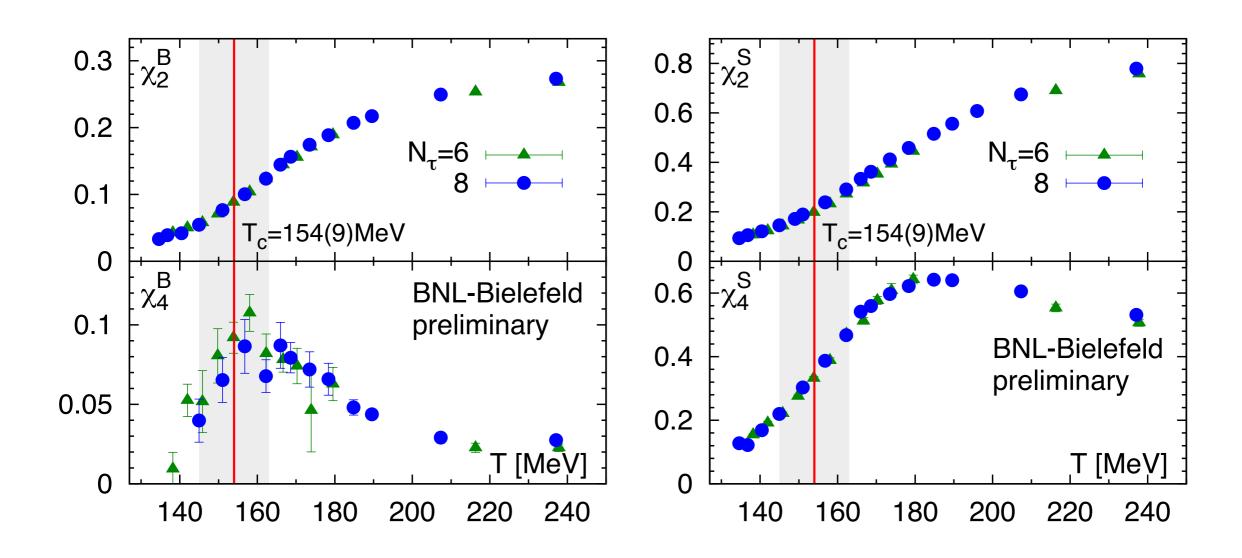
Observables: traces of combinations of M and $M' = \partial M/\partial \mu$

$$\begin{split} \frac{\partial \ln Z}{\partial \mu} &= \frac{1}{Z} \int \mathcal{D}U \; \mathrm{Tr} \left[M^{-1} M' \right] \; e^{\mathrm{Tr} \; \ln M} e^{-\beta S_G} \\ &= \left\langle \mathrm{Tr} \left[M^{-1} M' \right] \right\rangle \\ \frac{\partial^2 \ln Z}{\partial \mu^2} &= \left\langle \mathrm{Tr} \left[M^{-1} M'' \right] \right\rangle - \left\langle \mathrm{Tr} \left[M^{-1} M' M^{-1} \right] \right\rangle + \left\langle \mathrm{Tr} \left[M^{-1} M' \right]^2 \right\rangle \end{split}$$

Method: stochastic estimators with N=1500 random vectors

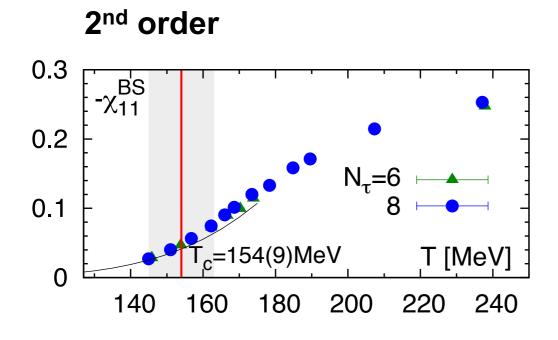
$$ext{Tr}\left[Q
ight]pprox rac{1}{N}\sum_{i=1}^{N}\eta_{i}^{\dagger}Q\eta_{i} \qquad ext{with} \qquad \lim_{N o\infty}rac{1}{N}\sum_{i=1}^{N}\eta_{i,x}^{\dagger}\eta_{i,y}=\delta_{x,y}$$

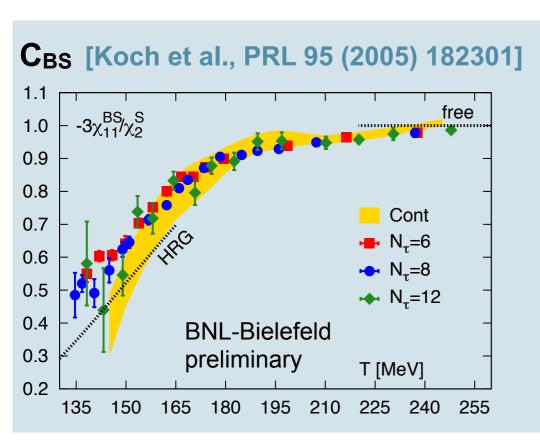
Generalized Susceptibilites / Cumulants

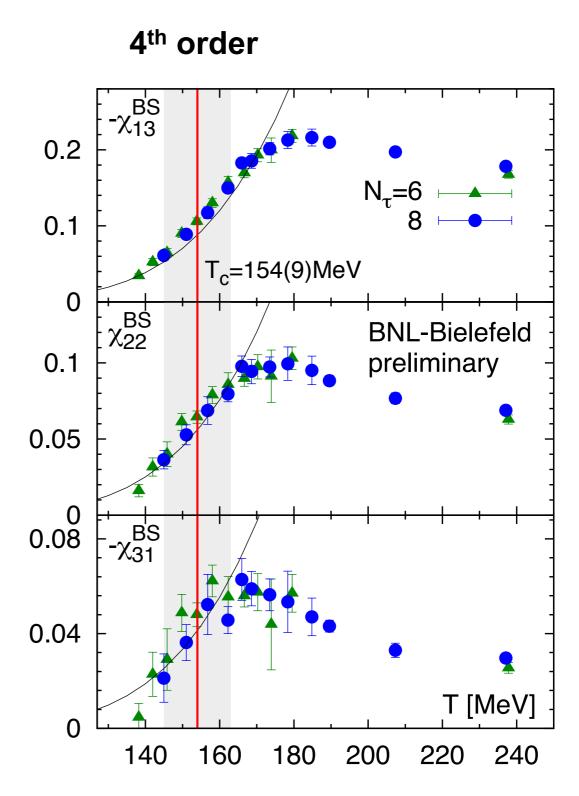


 \Rightarrow structure consistent with O(4) critical behavior at $\mu_B=0,\ m=0$

BS Correlations







Strangeness within the HRG

HRG:

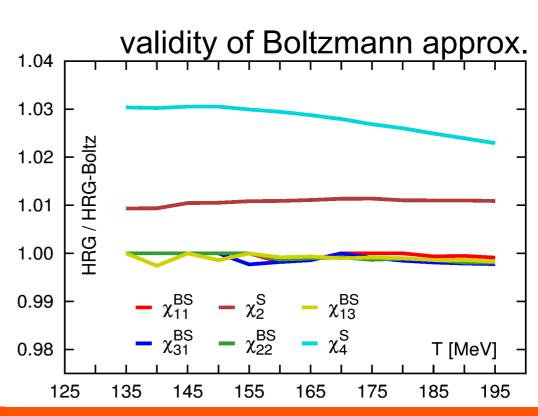
$$\begin{split} \frac{p^{HRG}}{T^4} &= \frac{1}{VT^3} \sum_{i \in \ mesons} \ln \mathcal{Z}^M_{m_i}(T,V,\mu_S) + \frac{1}{VT^3} \sum_{i \in \ baryons} \ln \mathcal{Z}^B_{m_i}(T,V,\mu_B,\mu_S) \\ \text{with} & \quad \mathsf{M}: \\ \chi^{\mathsf{S}}_2 &= \mathsf{M} + \mathsf{B}_1 + 2^2 \mathsf{B}_2 + 3^2 \mathsf{B}_3 \\ \ln \mathcal{Z}^{M,\mathsf{PS}}_{m_i} &= \frac{VT^3}{\pi^2} - \mathcal{Q}_i \, \mathsf{B}_2^{\mathsf{T}} + 2^3 \mathsf{B}_3^{\mathsf{T}} + 2^3 \mathsf{B}_3^{\mathsf{T}} \\ \ln \mathcal{Z}^{\mathsf{M},\mathsf{PS}}_{m_i} &= -\mathsf{B}_1 - 2 \mathsf{B}_2 - 3 \mathsf{B}_3^{\mathsf{K} + 1} & \quad \mathsf{E}_2^{\mathsf{T}} \\ \chi^{\mathsf{BS}}_{31} &= -\mathsf{B}_1 - 2 \mathsf{B}_2 - 3 \mathsf{B}_3^{\mathsf{K} + 1} & \quad \mathsf{B}_3 : & \text{here we have set } \mu_Q \equiv 0 \end{split}$$

• For baryons and strange particles we can

assume Boltzmann approximation:
$$\chi_{A}^{S} = M + B_{1} + 2^{4}B_{2} + 3^{4}B_{3}$$

$$\ln \mathcal{Z}_{m_{i}}^{M/B} \propto f(m_{i}, T) \cosh(B_{i}\hat{\mu}_{B} + S_{i}\hat{\mu}_{S})$$

- $\Rightarrow \mu_B, \mu_S$ -dependence factorizes
- > pressure obtains contributions from different hadronic sectors, defined by all possible (B_i, S_i) -combinations

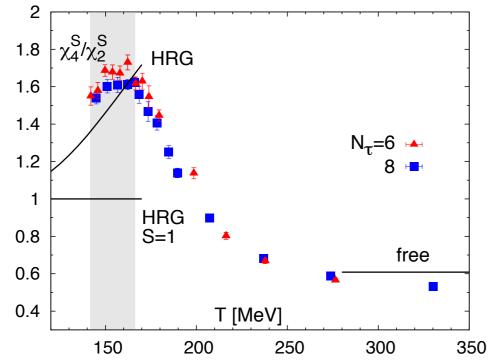


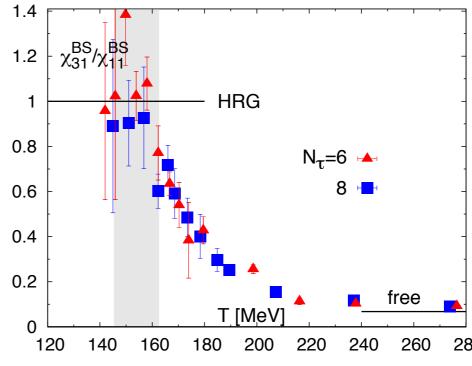
Strangeness within the HRG

The pressure obtains contributions from different hadronic sectors:

$$egin{array}{ll} rac{p^{HRG}}{T^4} &= f_{(0,0)}(T) + f_{(0,1)}(T) \cosh(-\hat{\mu}_S) & \left.
ight. & \left. + f_{(1,0)} \cosh(\hat{\mu}_B) + f_{(1,1)}(T) \cosh(\hat{\mu}_B - \mu_S) & \left.
ight. & \left. + f_{(1,2)}(T) \cosh(\hat{\mu}_B - 2\hat{\mu}_S) + f_{(1,3)}(T) \cosh(\hat{\mu}_B - 3\hat{\mu}_S) &
ight.
ight. & \left.
ight. & \left.$$

- \Longrightarrow for diagonal fluctuations: $\chi_n^B \equiv \chi_{n+2}^B$, whereas $\chi_n^S \not\equiv \chi_{n+2}^S$ (multi-strange hadrons)
- \Longrightarrow for correlations: $\chi_{n,m}^{BS} \not\equiv \chi_{n+2,m}^{BS}$





- ullet at $T \lesssim 160~{
 m MeV}$ we find reasonable agreement with the HRG (within 20%)
- ullet at $T\gtrsim 160~{
 m MeV}$ deviations from HRG become large

The pressure obtains contributions from 4 different strangeness sectors:

$$egin{array}{ll} rac{p^{HRG}}{T^4} &=& f_{(0,0)}(T) + f_{(0,1)}(T) \cosh(-\hat{\mu}_S) & \left.
ight. & \left. + f_{(1,0)} \cosh(\hat{\mu}_B) + f_{(1,1)}(T) \cosh(\hat{\mu}_B - \mu_S) & \left.
ight. & \left. + f_{(1,2)}(T) \cosh(\hat{\mu}_B - 2\hat{\mu}_S) + f_{(1,3)}(T) \cosh(\hat{\mu}_B - 3\hat{\mu}_S) &
ight. & \left.
ight.$$

$$\Rightarrow \left(\frac{p^{HRG}}{T^4}\right)_{S \neq 0} = M_1 + B_1 + B_2 + B_3$$

⇒ diagonal fluctuations and correlations are given as linear combinations of the different strangeness sectors

$$\chi_{2}^{S} = (-1)^{2} M_{1} + (-1)^{2} B_{1} + (-2)^{2} B_{2} + (-3)^{2} B_{3}$$

$$\chi_{4}^{S} = (-1)^{4} M_{1} + (-1)^{4} B_{1} + (-2)^{4} B_{2} + (-3)^{4} B_{3}$$

$$\chi_{11}^{BS} = (-1) B_{1} + (-2) B_{2} + (-3) B_{3}$$

$$\chi_{22}^{BS} = (-1)^{2} B_{1} + (-2)^{2} B_{2} + (-3)^{2} B_{3}$$

$$\vdots$$

invert this relation!

Idea: separate strangeness sectors by making use of all diagonal strangeness fluctuations and baryon-strangeness correlations up to the 4th order

$$x_1 \chi_{11}^{BS} + x_2 \chi_{31}^{BS} + x_3 \chi_2^S + x_4 \chi_{22}^{BS} + x_5 \chi_{13}^{BS} + x_6 \chi_4^S$$

$$= y_1 M_1 + y_2 B_1 + y_3 B_2 + y_4 B_3$$

solve:
$$Aec{x}=\hat{e}_i$$
 with

$$\mathbf{A} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 1 \\ -1 & -1 & 1 & 1 & -1 & 1 \\ -2 & -2 & 4 & 4 & -8 & 16 \\ -3 & -3 & 9 & 9 & -27 & 81 \end{pmatrix}$$

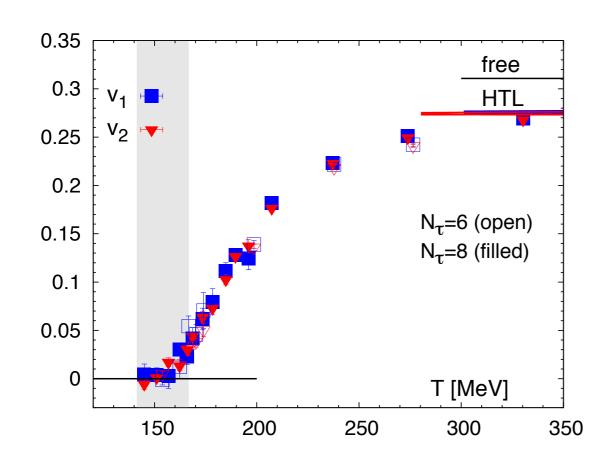
defined by powers of strangeness charges

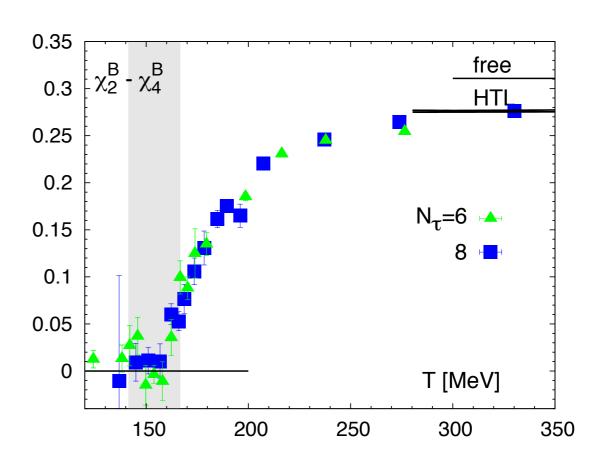
$$\Rightarrow$$
 dim (Kernel)=2, spanned by v_1,v_2

$$v_1 = \chi_{31}^{BS} - \chi_{11}^{BS}$$

$$v_2 = \frac{1}{3}(\chi_2^S - \chi_4^S) - 2\chi_{13}^{BS} - 4\chi_{22}^{BS} - 2\chi_{31}^{BS}$$

must vanish if HRG is a valid description!





- strange baryons carry baryon number 1
- partial pressure from strange particles is hadronic
- all baryons carry baryon number 1

⇒ indicator for the validity of the HRG

- ullet at $T \lesssim 160~{
 m MeV}$ we find reasonable agreement with the HRG
- ullet at $T\gtrsim 160~{
 m MeV}$ deviations from HRG become large

solving the 4 inhomogenous systems $A ec{x} = \hat{e}_i$

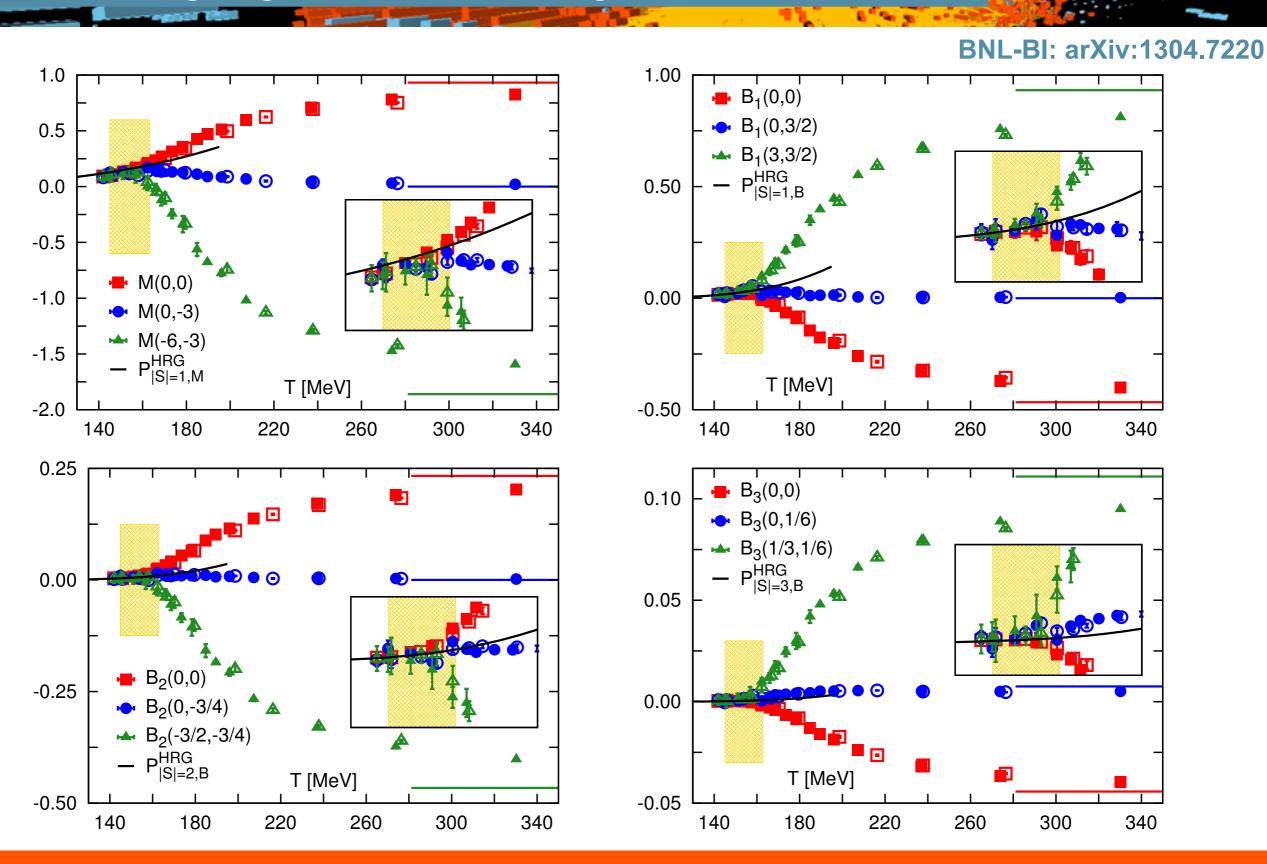
the solutions are translations of the kernel

$$M(c_1, c_2) = \chi_2^S - \chi_{22}^{BS} + c_1 v_1 + c_2 v_2$$

$$B_1(c_1, c_2) = \frac{1}{2} \left(\chi_4^S - \chi_2^S + 5\chi_{13}^{BS} + 7\chi_{22}^{BS} \right) + c_1 v_1 + c_2 v_2$$

$$B_2(c_1, c_2) = -\frac{1}{4} \left(\chi_4^S - \chi_2^S + 4\chi_{13}^{BS} + 4\chi_{22}^{BS} \right) + c_1 v_1 + c_2 v_2$$

$$B_3(c_1, c_2) = \frac{1}{18} \left(\chi_4^S - \chi_2^S + 3\chi_{13}^{BS} + 3\chi_{22}^{BS} \right) + c_1 v_1 + c_2 v_2$$

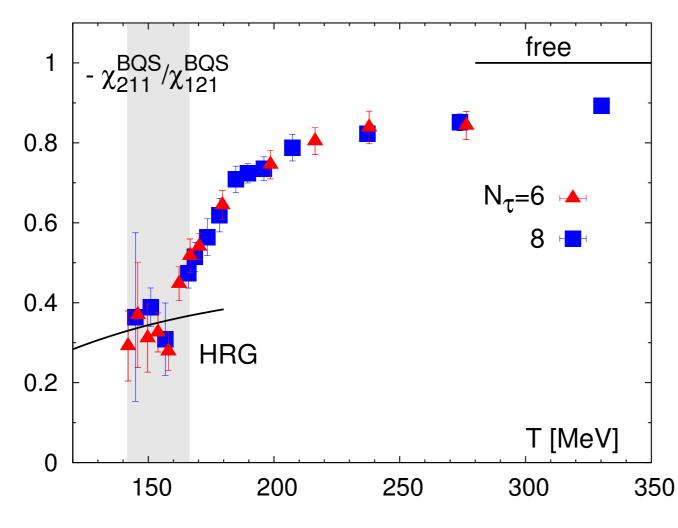


- ullet For $T\lesssim 155$ MeV different strange sectors agree **separately** with the HRG
- For higher temperatures the deviations from HRG set in abruptly and rapidly become large
 - modifications of the strange hadron contribution to bulk thermodynamics become apparent in the crossover region and follow the same pattern present also in the light quark sector.

Strangeness in the QGP

 We now probe the quasi-particle picture, i.e. to what extent the susceptibilities involving strangeness contributions can be understood in terms of elementary degrees of freedom that carry quantum numbers

$$S = \pm 1, B = \pm 1/3, Q = \pm 1/3$$



• for a free (uncorrelated) strange quarks we have $B^2Q=-BQ^2$

$$\Longrightarrow \lim_{T \to \infty} \left(-\chi_{211}^{BQS} / \chi_{121}^{BQS} \right) = 1$$

 for free (uncorrelated) strange hadrons we have contributions from two charge sectors.

$$\Rightarrow \left(-\chi_{211}^{BQS}/\chi_{121}^{BQS}\right) < 1$$

- We have provided evidence that in QCD the strange hadron sector gets modified strongly in the vicinity of the pseudo-critical temperature determined from the light quark chiral susceptibilities.
- Deviations from the HRG model start becoming large in the transition region and follow a pattern similar to that known for the light quark sector.
- There thus is no evidence that deconfinement and the dissolution of hadronic bound states may be shifted to higher temperatures for strange hadrons.
- We also showed that at temperatures larger than T>1.3T_C a simple quasi-particle model may be sufficient to describe properties of mixed strangeness-baryon number susceptibilities.
- Closer to T_C the structure of these susceptibilities becomes more complicated. A feature well-known also from bulk thermodynamic quantities like the pressure.