Nucleon generalized form factors with twisted mass fermions

C. Alexandrou University of Cyprus and Cyprus Institute

with

M. Constantinou, V. Drach, K. Jansen, Ch. Kallidonis, G. Koutsou

The XXXI International Symposium on Lattice Field Theory Mainz, 29 July - 3 Aug. 2013

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.)

Nucleon Structure

Outline

Introduction

- Wilson twisted mass lattice QCD
- Nucleon mass
- Setting the scale

3

High precision study of nucleon observables

- Excited states contributions
- Evaluation of disconnected quark loop contributions
- Axial charge g_A
- Momentum fraction (x)
- Scalar charge

Results

- Axial charge
- Momentum fraction and Nucleon spin
- Scalar charge

4 Conclusions

Wilson twisted mass lattice QCD

• $N_f = 2$: $\psi = \begin{pmatrix} u \\ d \end{pmatrix}$

Change of variables: $\psi = \frac{1}{\sqrt{2}} [\mathbf{1} + i\tau^3 \gamma_5] \chi$ $\bar{\psi} = \bar{\chi} \frac{1}{\sqrt{2}} [\mathbf{1} + i\tau^3 \gamma_5]$ \Rightarrow mass term: $\bar{\psi}m\psi = \bar{\chi}i\gamma_5\tau^3m\chi$

$$S = S_g + a^4 \sum_{x} \bar{\chi}(x) \left[\frac{1}{2} \gamma_{\mu} (\nabla_{\mu} + \nabla^*_{\mu}) - \frac{ar}{2} \nabla_{\mu} \nabla^*_{\mu} + m_{\text{crit}} + i \gamma_5 \tau^3 \mu \right] \chi(x)$$

• $N_f = 2 + 1 + 1$

$$S_{h} = \sum_{x} \bar{\chi}_{h}(x) \left[D_{W} + m_{(0,h)} + i\gamma_{5}\tau^{1}\mu_{\sigma} + \tau^{3}\mu_{\delta} \right] \chi_{h}(x)$$

S_q: Iwasaki action

N_f = 2 twisted mass plus clover and Iwasaki action → a good formulation for simulations at the physical point, talk by B. Kostrzewa, Monday, session 2G
 → preliminary results at physical point

Wilson tmQCD at maximal twist

- Automatic O(a) improvement for a class of observables
- ullet No operator improvement needed, renormalization simplified o important for nucleon structure

Nucleon mass

- Cut-off effects small for these lattice spacings
- Fit for $m_{\pi} < 375$ MeV
- New result at near physical pion gives complete agreement with experimental value

Setting the scale

- For baryon observables use nucleon mass at physical limit
- Extrapolate using lowest HB χ PT result: $m_N = m_N^0 4c_1 m_\pi^2 \frac{3g_A^2}{16\pi f_\pi^2} m_\pi^3$
- Estimate systematic error due to chiral extrapolation: i) using next order in HB_χPT that includes explicit Δ-degrees of freedom; ii) varying the pion mass range for the fit; iii) allowing the coefficient of the m³_π to be a fit parameter
- Simultaneous fits to $\beta = 1.9$, $\beta = 1.95$ and $\beta = 2.1$ results
- Allows a cross-check with the determination using f_π

• σ -term from m_N using $\mathcal{O}(p^3)$ and $m_\pi \lesssim 300$ MeV: $\sigma_{\pi N} = 58(8)(7)$ MeV

Using the nucleon mass we find $r_0 \sim 0.495(5)$ fm in the continuum limit

High precision study of nucleon observables

Dedicated high statistics study

Choose one ensemble to perform a high statistics analysis for:

- excited state contributions
 - nucleon axial charge g_A weak, S. Dinter, C.A., M. Constantinou, V. Drach, K. Jansen and D. Renner, arXiv: 1108.1076
 - momentum fraction $\langle x \rangle_{u-d}$ intermediate
 - scalar charge (equivalently σ-terms) severe, talk by V. Drach, Tuesday, session 4B

disconnected contributions for all nucleon observables

 $N_f = 2 + 1 + 1$ twisted mass, a = 0.082 fm, $m_{\pi} = 373$ MeV

Extracting nucleon matrix elements

Form ratio by dividing the three-point correlator by an appropriate combination $(x_{x,r_{0}})$ $(x_{u,r_{0}})$ $(x_{u,r_{0}})$ $(x_{u,r_{0}})$

Plateau method:

$$R(t_{s}, t_{ins}, t_{0}) \xrightarrow{(t_{ins}-t_{0})\Delta \gg 1}_{(t_{s}-t_{ins})\Delta \gg 1} \mathcal{M}[1 + \ldots e^{-\Delta(\mathbf{p})(t_{ins}-t_{0})} + \ldots e^{-\Delta(\mathbf{p}')(t_{s}-t_{ins})}]$$

- M the desired matrix element
- ► *t_s*, *t_{ins}*, *t*₀ the sink, insertion and source time-slices
- Δ(p) the energy gap with the first excited state

Extracting nucleon matrix elements

Form ratio by dividing the three-point correlator by an appropriate combination $(x_{o,t,i})$ of two-point functions:

Plateau method:

$$R(t_{s}, t_{ins}, t_{0}) \xrightarrow{(t_{ins} - t_{0}) \Delta \gg 1}_{(t_{s} - t_{ins}) \Delta \gg 1} \mathcal{M}[1 + \ldots e^{-\Delta(\mathbf{p})(t_{ins} - t_{0})} + \ldots e^{-\Delta(\mathbf{p}')(t_{s} - t_{ins})}]$$

- M the desired matrix element
- t_s, t_{ins}, t₀ the sink, insertion and source time-slices
- Δ(p) the energy gap with the first excited state
- Summation method: Summing over t_{ins}:

$$\sum_{t_{ins}=t_0}^{t_s} R(t_s, t_{ins}, t_0) = \text{Const.} + \mathcal{M}[(t_s - t_0) + \mathcal{O}(e^{-\Delta(\mathbf{p})(t_s - t_0)}) + \mathcal{O}(e^{-\Delta(\mathbf{p}')(t_s - t_0)})].$$

- Excited state contributions are suppressed by exponentials decaying with $t_s t_0$, rather than $t_s t_{ins}$ and/or $t_{ins} t_0$
- Also works if one does not include t_0 and t_s in the sum \rightarrow used for the results shown here
- However, one needs to fit the slope rather than to a constant or take differences and then fit to a constant

L. Maiani, G. Martinelli, M. L. Paciello, and B. Taglienti, Nucl. Phys. B293, 420 (1987); S. Capitani et al., arXiv:1205.0180

 $(\mathbf{x}_{ins}, t_{ins})$

 (x_0, t_0)

Quark loop contributions

Notoriously difficult

- $L(x) = Tr [\Gamma G(x; x)] \rightarrow \text{need all-to-all propagator}$
- Large gauge noise → large statistics
- Use stochastic noise $\eta \to \text{solve } Dv_r = \eta_r, r = 1, \dots, N_r \to D^{-1} = \lim_{N_r \to \infty} \frac{1}{N_r} \sum_{i=1}^{N_r} |s_i\rangle \langle \eta_i|$
- Reduce noise by increasing statistics
 ⇒ Take advantage of graphics cards (GPUs) → CUDA programming language Special Session: Coding Efforts, Friday, 10G

C. A., M. Constantinou, S. Dinter, V. Drach, K. Hadjiyiannakou, K. Jansen, G. Koutsou, A. Strelchenko, A. Vaquero arXiv:1211.0126
C.A., K. Hadjiyiannakou, G. Koutsou, A. O'Cais, A. Strelchenko, arXiv:1108.2473

Quark loop contributions

Notoriously difficult

- $L(x) = Tr [\Gamma G(x; x)] \rightarrow \text{need all-to-all propagator}$
- Large gauge noise → large statistics

- Use stochastic noise $\eta \rightarrow \text{solve } Dv_r = \eta_r, r = 1, \dots, N_r \rightarrow D^{-1} = \lim_{N_r \rightarrow \infty} \frac{1}{N_r} \sum_{j=1}^{N_r} |s_j\rangle \langle \eta_j|$
- Reduce noise by increasing statistics
 ⇒ Take advantage of graphics cards (GPUs) → CUDA programming language Special Session: Coding Efforts, Friday, 10G
- For scalar charge (and σ-terms) a good signal is obtained with N_r = 24 in combination of using advantages of the twisted mass formulation
- For other disconnected contributions one has large stochastic noise → Reduce noise by increasing statistics at low cost → use low precision inversions and correct bias (truncated solver method (TSM)), G. Bali, S. Collins and A. Schäfer, PoSLat2007, 141; G. Bali *et al.*, arXiv:1111.1600

$$D^{-1} = \lim_{N_{HP} \to \infty} \frac{1}{N_{HP}} \sum_{j=1}^{N_{HP}} \left[|s_j > <\eta_j|_{HP} - |s_j > <\eta_j|_{LP} \right] + \frac{1}{N_{LP}} \sum_{j=N_{HP}+1}^{N_{HP}+N_{LP}} |s_j > <\eta_j|_{LP}$$

with $D|s_j >= |\eta_j >$

- Need to tune in addition to the high precision noise vectors N_{HP} and number of low precision vectors N_{LP}
- Since the LP sources don't require an accurate inversion, we can take advantage of the half precision algorithms for GPUs - use the QUDA library
- To compute the isoscalar disconnected contribution to g_A , we use $N_{\rm HP} = 24$ and $N_{\rm LP} \ge 500$

Axial charge g_A

Axial-vector FFs: $A^3_{\mu} = \bar{\psi}\gamma_{\mu}\gamma_5 \frac{\tau^3}{2}\psi(x) \Longrightarrow \frac{1}{2}\bar{u}_N(\vec{p'}) \left[\gamma_{\mu}\gamma_5 G_A(q^2) + \frac{q^{\mu}\gamma_5}{2m}G_P(q^2)\right] u_N(\vec{p})|_{q^2=0}$ \rightarrow yields $G_A(0) \equiv g_A$: i) well known experimentally, & ii) no quark loop contributions

Axial charge g_A

Axial-vector FFs: $A^3_{\mu} = \bar{\psi}\gamma_{\mu}\gamma_5 \frac{\tau^3}{2}\psi(x) \Longrightarrow \frac{1}{2}\bar{u}_N(\vec{p'}) \left[\gamma_{\mu}\gamma_5 G_A(q^2) + \frac{q^{\mu}\gamma_5}{2m}G_p(q^2)\right] u_N(\vec{p})|_{q^2=0}$ \rightarrow yields $G_A(0) \equiv g_A$: i) well known experimentally, & ii) no quark loop contributions

Use of incremental eigCG algorithm, A.

Stathopoulos and K. Orginos, arXiv:0707.0131

- One sequential inversion for each t_s, obtain results for all operator insertions
- ► ~3× cheaper
- Consistent results between summation and plateau methods

 No detectable excited states contamination, agrees with high precision study, S. Dinter et al.,

arXiv:1108.1076 and C. Alexandrou et al., arXiv:1112.2931

- Same plateau for multiple t_ss
- No curvature in summed ratio, consistent results for various fit-ranges

Isoscalar axial charge

Disconnected $N_f = 2 = 1 + 1$ TMF, a = 0.082 fm, $32^3 \times 64$, $m_\pi = 373$ MeV, 200000 statistics (on 4700 confs)

Phys.Rev.Lett. 108 (2012) 222001

· Renormalization currently under study

Perturbatively the difference between isovector and isoscalar at two-loop, shown to be small for the Wilson action, H. Panagoupoulos and A. Skouroupathis, arXiv:0811.4264 For now neglect the difference

Momentum fraction

Isovector momentum fraction carried by quarks: Extracted from the nucleon matrix elements of $\mathcal{O}^{\mu_1\mu_2} = \bar{\psi}\gamma^{\{\mu_1\}i} \stackrel{\leftrightarrow}{D}{}^{\mu_2\}\psi$ at $q^2 = 0$ with no disconnected contributions and known experimentally

 $N_f = 2 + 1 + 1$ twisted mass, a = 0.082 fm, $m_{\pi} = 373$ MeV, 1200 statistics

- Noticeable excited state contamination, especially for the iso-scalar
- For the plateau method one needs to show convergence by varying the sink-source time separation → also requires a number of sequential inversions ⇒ consistency of plateau and summation method gives confidence in the results

Momentum fraction

Twisted Mass, a = 0.082 fm, $32^3 \times 64$, $m_{\pi} = 373$ MeV, $\sim 200\ 0000$ statistics (on 4700 confs)

Disconnected

Can put bound on its value

 Including momentum in the sink/source improves statistical accuracy

Renormalization currently under study
 However, difference between isovector and isoscalar at two-loop, shown to be small for the Wilson action, H.
 Panagoupoulos and A. Skouroupathis, arXiv:0811.4264
 For now neglect the difference

Scalar charge

The scalar charge g_s and the tensor charge g_T provide constrains for possible scalar and tensor interactions at the TeV scale. For g_T , talk by M. Constantinou in this session

- Isovector: $g_s = \langle N | \bar{u}u \bar{d}d | N \rangle$
- Isoscalar: g_s^{u+d} = ⟨N|ūu + dd|N⟩ → analogous to the calculation of the nucleon sigma-terms, uses advantages for twisted mass fermions, talk by V. Drach, Tuesday, session 4B

 $N_f = 2 + 1 + 1$ twisted mass, a = 0.082 fm, $m_{\pi} = 373$ MeV, 1200 statistics Connected

- Severe contamination from excited states
- Agreement of summation, plateau and two-states fits give confidence to the correctness of the final result

Scalar charge

The scalar charge g_s and the tensor charge g_T provide constrains for possible scalar and tensor interactions at the TeV scale. For g_T , talk by M. Constantinou in this session

- Isovector: $g_s = \langle N | \bar{u}u \bar{d}d | N \rangle$
- Isoscalar: g_s^{u+d} = ⟨N|ūu + dd|N⟩ → analogous to the calculation of the nucleon sigma-terms, uses advantages for twisted mass fermions, talk by V. Drach, Tuesday, session 4B

 $N_f = 2 + 1 + 1$ twisted mass, a = 0.082 fm, $m_{\pi} = 373$ MeV, 1200 statistics Connected

- Severe contamination from excited states
- Agreement of summation, plateau and two-states fits give confidence to the correctness of the final result

Scalar charge

 $N_{\rm f} = 2 + 1 + 1$ twisted mass, a = 0.082 fm, m_{π} = 373 MeV, \sim 200 000 statistics Disconnected

Results: I. Axial charge g_A

C.A., M. Constantinou, S. Dinter, V. Drach, K. Jansen, C. Kallidonis, G. Koutsou, arXiv:1303.5979

Results: I. Axial charge g_A

Comparison with other groups

Results obtained using the plateau method with sink-source time separation $\sim (1.0-1.2)~\text{fm}$

- Results at near physical pion mass are now becoming available \rightarrow need dedicated study at physical point with high statistics and larger volumes
- A number of collaborations are engaging in systematic studies, e.g.
 - N_f = 2 + 1 Clover, J. R. Green et al., arXiv:1209.1687
 - N_f = 2 Clover, R.Hosley et al., arXiv:1302.2233
 - N_f = 2 Clover, S. Capitani et al. arXiv:1205.0180
 - N_f = 2 + 1 Clover, B. J. Owen et al., arXiv:1212.4668
 - N_f = 2 + 1 + 1 Mixed action (HISQ/Clover), T. Bhattacharya et al., arXiv:1306.5435
 - Also several talks in Lattice 2013 e.g. S. Ohta, M. Lin, Thursday, session 7B

C.A., M. Constantinou, S. Dinter, V. Drach, K. Jansen, C. Kallidonis, G. Koutsou, arXiv:1303.5979

Results: I. Axial charge g_A

Comparison with other groups

 Results at near physical pion mass are now becoming available → need dedicated study at physical point with high statistics and larger volumes

• A number of collaborations are engaging in systematic studies, e.g.

- N_f = 2 + 1 Clover, J. R. Green et al., arXiv:1209.1687
- N_f = 2 Clover, R.Hosley et al., arXiv:1302.2233
- N_f = 2 Clover, S. Capitani et al. arXiv:1205.0180
- N_f = 2 + 1 Clover, B. J. Owen et al., arXiv:1212.4668
- N_f = 2 + 1 + 1 Mixed action (HISQ/Clover), T. Bhattacharya et al., arXiv:1306.5435
- Also several talks in Lattice 2013 e.g. S. Ohta, M. Lin, Thursday, session 7B

• Volume effects may not be the full story if we compare the result by QCDSF ($Lm_{\pi} \sim 2.7$) and LHPC ($Lm_{\pi} \sim 4.2$) at near physical pion mass

C.A., M. Constantinou, S. Dinter, V. Drach, K. Jansen, C. Kallidonis, G. Koutsou, arXiv:1303.5979

Total quark spin: $J^q = \frac{1}{2}(A^q_{20}(0) + B^q_{20}(0))$

 $A_{20}(Q^2)$ and $B_{20}(Q^2)$ extracted from the nucleon matrix elements of $\mathcal{O}^{\mu_1\mu_2} = \bar{\psi}\gamma^{\{\mu_1\,i}\stackrel{\leftrightarrow}{D}^{\mu_2\}}\psi$ For $Q^2 = 0$: moments of parton distributions measured in DIS

$$A_{20}^q(0) \equiv \langle x \rangle_q = \int_0^1 dx \, x \left[q(x) + \bar{q}(x) \right]$$

Unpolarized quark distribution: Polarized quark distribution: Helicity quark distribution:

n: $q(x) = q(x)_{\downarrow} + q(x)_{\uparrow}$ $\Delta q(x) = q(x)_{\downarrow} - q(x)_{\uparrow}$ $\delta q = q_T + q_{\perp}$, talk by M. Constantinou, this session

Total quark spin: $J^q = \frac{1}{2}(A^q_{20}(0) + B^q_{20}(0))$

 $A_{20}(Q^2)$ and $B_{20}(Q^2)$ extracted from the nucleon matrix elements of $\mathcal{O}^{\mu_1\mu_2} = \bar{\psi}\gamma^{\{\mu_1\,i}\stackrel{\leftrightarrow}{D}^{\mu_2\}}\psi$ For $Q^2 = 0$: moments of parton distributions measured in DIS

$$A_{20}^q(0) \equiv \langle x \rangle_q = \int_0^1 dx \, x \left[q(x) + \bar{q}(x) \right]$$

Unpolarized quark distribution: Polarized quark distribution: Helicity quark distribution:

n: $q(x) = q(x)_{\downarrow} + q(x)_{\uparrow}$ $\Delta q(x) = q(x)_{\downarrow} - q(x)_{\uparrow}$ $\delta q = q_T + q_{\perp}$, talk by M. Constantinou, this session

Results in the \overline{MS} scheme at $\mu = 2$ GeV using non-perturbative renormalization, C. Alexandrou *et al.*, arXiv:1006.1920

Total quark spin: $J^q = \frac{1}{2}(A^q_{20}(0) + B^q_{20}(0))$

 $A_{20}(Q^2)$ and $B_{20}(Q^2)$ extracted from the nucleon matrix elements of $\mathcal{O}^{\mu_1\mu_2} = \bar{\psi}\gamma^{\{\mu_1\,i}\stackrel{\leftrightarrow}{D}^{\mu_2\}}\psi$ For $Q^2 = 0$: moments of parton distributions measured in DIS

$$A_{20}^q(0) \equiv \langle x \rangle_q = \int_0^1 dx \, x \left[q(x) + \bar{q}(x) \right]$$

Unpolarized quark distribution: Polarized quark distribution: Helicity quark distribution: $\begin{array}{l} q(x) = q(x)_{\downarrow} + q(x)_{\uparrow} \\ \Delta q(x) = q(x)_{\downarrow} - q(x)_{\uparrow} \\ \delta q = q_{T} + q_{\perp}, \text{ talk by M. Constantinou, this session} \end{array}$

Results in the \overline{MS} scheme at $\mu = 2$ GeV using non-perturbative renormalization, C. Alexandrou *et al.*, arXiv:1006.1920

Total quark spin: $J^q = \frac{1}{2}(A^q_{20}(0) + B^q_{20}(0))$

 $A_{20}(Q^2)$ and $B_{20}(Q^2)$ extracted from the nucleon matrix elements of $\mathcal{O}^{\mu_1\mu_2} = \bar{\psi}\gamma^{\{\mu_1\,i}\stackrel{\leftrightarrow}{D}^{\mu_2\}}\psi$ For $Q^2 = 0$: moments of parton distributions measured in DIS

$$A_{20}^q(0) \equiv \langle x \rangle_q = \int_0^1 dx \, x \left[q(x) + \bar{q}(x) \right]$$

Unpolarized quark distribution: Polarized quark distribution: Helicity quark distribution:

We also need $B_{20}^{q}(0)$

Where is the nucleon spin?

Spin sum: $\frac{1}{2} = \sum_{q} \left(\frac{1}{2} \Delta \Sigma^{q} + L^{q} \right) + J^{G}$

Connected contributions

- $L^{u+d} \sim 0$ at physical point
- ΔΣ^{u+d} in agreement with experimental value at physical point
- The total spin $J^{u+d} \sim 0.25 \implies$ Where is the other half?

However, more statistics and checks of systematics are needed for final results at the physical point

Where is the nucleon spin?

Spin sum:
$$\frac{1}{2} = \sum_{q} \left(\frac{1}{2} \Delta \Sigma^{q} + L^{q} \right) + J^{G}$$

Connected contributions

• $L^d \sim -L^u$

However, more statistics and checks of systematics are needed for final results at the physical point

Nucleon Structure

Where is the nucleon spin? Spin sum: $\frac{1}{2} = \sum_{q} (\frac{1}{2}\Delta\Sigma^{q} + L^{q}) + J^{G}$

For one ensemble at $m_{\pi} = 373$ MeV we have the disconnected contribution \rightarrow we can check the effect on the observables, O(200000) statistics

- Disconnected quark loop contributions non-zero for ΔΣ^{u,d,s}
- Consistent with zero for J^{u,d}
- The total spin $J^{u+d} \sim 0.25 \implies$ Where is the other half?
- Quark loop contributions are small
- Contributions from J_g ? \rightarrow on-going efforts to compute them, K.-F. Liu *et al.* (χ QCD), arXiv:1203.6388, talk by C. Wiese, this session

Where is the nucleon spin? Spin sum: $\frac{1}{2} = \sum_{q} (\frac{1}{2}\Delta\Sigma^{q} + L^{q}) + J^{G}$

For one ensemble at $m_{\pi} = 373$ MeV we have the disconnected contribution \rightarrow we can check the effect on the observables, O(200000) statistics

- Disconnected quark loop contributions non-zero for ΔΣ^{u,d,s}
- Consistent with zero for J^{u,d}
- The total spin $J^{u+d} \sim 0.25 \implies$ Where is the other half?
- Quark loop contributions are small
- Contributions from J_g ? \rightarrow on-going efforts to compute them, K.-F. Liu *et al.* (χ QCD), arXiv:1203.6388, talk by C. Wiese, this session

Results: III. Scalar charge

The scalar charge g_s and the tensor charge g_T provide constrains for possible scalar and tensor interactions at the TeV scale. For g_T , talk by M. Constantinou in this session

- Isovector: $g_s = \langle N | \bar{u}u \bar{d}d | N \rangle$
- Isoscalar: g_s^{u+d} = ⟨N|ūu + dd|N⟩ → analogous to the calculation of the nucleon sigma-terms, uses advantages for twisted mass fermions, talk by V. Drach, Tuesday, session 4B

Connected isoscalar taking sink-source time separation $\sim (1.0-1.2)~\text{fm}$

Results: III. Scalar charge

The scalar charge g_s and the tensor charge g_T provide constrains for possible scalar and tensor interactions at the TeV scale. For g_T , talk by M. Constantinou in this session

- Isovector: $g_s = \langle N | \bar{u}u \bar{d}d | N \rangle$
- Isoscalar: g_s^{u+d} = ⟨N|ūu + dd|N⟩ → analogous to the calculation of the nucleon sigma-terms, uses advantages for twisted mass fermions, talk by V. Drach, Tuesday, session 4B

Increasing the sink-source time separation \sim 1.5 fm for one TMF ensemble

Isoscalar scalar charge

Besides the connected contribution it has a disconnected part

Isoscalar scalar charge

Besides the connected contribution it has a disconnected part

- Simulations at the physical point → that's where we always wanted to be!
 ⇒ Physical results on g_A, ⟨x⟩_{u-d} etc are now directly accessible
 But will need high statistics and careful cross-checks → noise reduction techniques are crucial e.g.
 AMA, TSM, smearing etc
- Evaluation of quark loop diagrams has become feasible
- Predictions for other hadron observables are emerging e.g. axial charge of hyperons and charmed baryons
- Confirmation of experimentally known quantities such as g_A will enable reliable predictions of others \rightarrow provide insight into the structure of hadrons and input that is crucial for new physics such as the nucleon σ -terms, g_s and g_T

• Simulations at the physical point \rightarrow that's where we always wanted to be! \implies Physical results on g_A , $\langle x \rangle_{u-d}$ etc are now directly accessible But will need high statistics and careful cross-checks \rightarrow noise reduction techniques are crucial e.g. AMA, TSM, smearing etc

Evaluation of quark loop diagrams has become feasible

- Predictions for other hadron observables are emerging e.g. axial charge of hyperons and charmed baryons
- Confirmation of experimentally known quantities such as g_A will enable reliable predictions of others \rightarrow provide insight into the structure of hadrons and input that is crucial for new physics such as the nucleon σ -terms, g_s and g_T

- Simulations at the physical point → that's where we always wanted to be!
 ⇒ Physical results on g_A, ⟨x⟩_{u-d} etc are now directly accessible
 But will need high statistics and careful cross-checks → noise reduction techniques are crucial e.g.
 AMA, TSM, smearing etc
- Evaluation of quark loop diagrams has become feasible
- Predictions for other hadron observables are emerging e.g. axial charge of hyperons and charmed baryons
- Confirmation of experimentally known quantities such as g_A will enable reliable predictions of others \rightarrow provide insight into the structure of hadrons and input that is crucial for new physics such as the nucleon σ -terms, g_s and g_T

- Simulations at the physical point → that's where we always wanted to be!
 ⇒ Physical results on g_A, ⟨x⟩_{u-d} etc are now directly accessible
 But will need high statistics and careful cross-checks → noise reduction techniques are crucial e.g.
 AMA, TSM, smearing etc
- Evaluation of quark loop diagrams has become feasible
- Predictions for other hadron observables are emerging e.g. axial charge of hyperons and charmed baryons
- Confirmation of experimentally known quantities such as g_A will enable reliable predictions of others \rightarrow provide insight into the structure of hadrons and input that is crucial for new physics such as the nucleon σ -terms, g_s and g_T

Thank you for your attention

The Project Cy-Tera (NEA YIIOAOMH/ΣTPATH/0308/31) is co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation

Backup slides

Two-state fits

Fitting the ratio to two-states simultaneous for several sink-source separations works for the scalar charge and momentum fraction. As stressed g_A does not pick up contributions from excited states.

Two-state fits

Fitting the ratio to two-states simultaneous for several sink-source separations works for the scalar charge and momentum fraction. As stressed g_A does not pick up contributions from excited states.

Not useful for predicting the large time dependence