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Quark Mass dependence of QCD phase trantion 

• Nature of QCD phase transition changes as a function of the mass. 
• The determination of the boundary of 1st order region: important.  
• On the line of physical mass, the crossover at low density       1st order 

transition at high density. 
• However, the 1st order region is very small, and simulations with very 

small quark mass are required.               Difficult to study. 
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Finite T and µ phase transition in (2+many)-flavor QCD 
(Cf. Kikukawa, Kohda and Yasuda,Phys.Rev.D77, 015014(2008)) 

• Technicolor model constructed by many-flavor QCD 
• Chiral phase transition of QCD 
         →  Electroweak phase transition at finite temperature 
• Nambu-Goldstone bosons 

– 3 bosons are absorbed into the gauge bosons. (3 massless bosons) 

– The other bosons have not observed yet. (The other bosons: heavy) 

– 2 techni-felmions are massless, and the others are heavy. 

• Electro-weak baryogenesis 
– Strong first order transition: required.  
– From the analogy of 2+1-flavor QCD, 1st order at small mass; 

2nd order or crossover at large mass. 
• It is important to determine the encpoint of the first order region in 

(2+many)-flavor QCD. 
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Nature of phase transition of 2+Nf-flavor QCD 
• Assumption: Nf-flavors are heavy.     

– Hopping parameter κ expansion 
 
 
 

• Parameter:                                              (?)       
• As increasing Nf, critical mass becomes larger (?) 

 
• Tricritical scaling: the same as (2+1)-flavor QCD 
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Histogram method 
Distribution function & the effective potential 

(S. Ejiri, Phys. Rev. D 77 (2008) 014508) 

1st order phase transition 

Critical point ( )µ,,eff TXV

Crossover W(X): Gaussian function  
V(X): Quadratic function 

W(X): Flat 
V(X): Curvature: Zero 

W(X): Two phases coexist 
V(X): Double well potential 

)(ln)(eff XWXV −=
X: order parameters, total quark number, average plaquette, etc.  
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Reweighting method for plaquette distribution function 

plaquette  P (1x1 Wilson loop for the standard action) 
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First order transition point: two phases coexist 
Plaquette distribution function        

• Performing simulations of 2-flavor QCD, 
• Dynamical effect of Nf-flavors are included by the reweighting. 
• We assume Nf-flavors are heavy. 
• Hopping parameter (κ) expansion（Wilson quark） 

 
 

• Effective potential  
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Curvature of the effective potential  

• Linear term of P is irrelevant to the curvature 
• β-dependence is only in the linear term. 
• The curvature is independent of β. 

 

 
 

• If there exists the negative curvature region, 
                             First order transition (double-well potential) 
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Effective potential at h≠0 

Nf=2 p4-staggared, 
mπ/mρ≈0.7 

   [data: Beilefeld-Swansea 
Collab.,PRD71,054508(2005)] 

 
• detM: hopping 

parameter expansion. 
 

• lnR increases as 
increasing h. 

• The curvature 
increases with h. 
 

Rln

( ) ( ) ( )hPRPVhPV ,ln0,,,, effeff −β=β

)0(effV

9 



Curvature of the effective potential  

• First order transition for h > 0.6 

( ) ( ) ( ) 0,ln0,,,,
2

2

2
eff

2

2
eff

2

=−
β

=
β

dP
hPRd

dP
PVd

dP
hPVd

at h=0  

Critical point: 

2

2  ln
dP

Wd
−

+ = ? 

Nf=2 p4-staggared, mπ/mρ≈0.7 

( ) tNNh hf 22 κ=
(Wilson quarks )  )69(0614.0=chCritical value: 

10 



Nf –dependence of the critical mass  

• Critical mass increases as Nf increases. 

 

 
– When Nf is large, κ is small. Then, the hopping 

parameter (κ) expansion is good. 
– On the hand, when Nf is small, the κ-expansion is bad. 

 

• In a quenched simulation with Nt=4, the first and second terms 
becomes comparable around κ=0.18. 

• For Nf=10, Nt=4,  
– It may be applicable  for Nf~10. 
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Curvature of the effective potential at finite µ 

( ) tNNh hf 22 κ= for Wilson quarks  
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• Calculations of detM: Taylor 
expansion up to O(µ6) 

• Distribution function of the 
complex phase of detM:  
approximated by a 
Gaussian function 

 



Reweighting  factors at h≠0 µ≠0 

Nf=2 p4-staggared, mπ/mρ≈0.7     [data in PRD71,054508(2005)] 

• The curvatures of lnR(P;µ,0) and lnR(P;0,h) are large at the same P. 
                               The curvature of lnR(P;µ,h) is enhanced.  
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Critical line at finite density 

• Calculations of detM: Taylor 
expansion up to O(µ6) 

• Distribution function of the 
complex phase of detM:  
approximated by a Gaussian 
function 
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Summary 
• We investigated the phase structure of (2+Nf)-flavor QCD. 

– This model is interesting  for the feasibility study of the electroweak 
baryogenesis in the technicolor scenario. 

– An appearance of a first order phase transition at finite temperature is 
required for the baryogenesis.  

• Applying the reweighting method, we determine the critical mass of 
heavy flavors terminating the first order region. 
– The critical mass becomes larger with Nf. 
– The first order region becomes wider as increasing µ.  

• This may be a good test for the determination of boundary of the 
first order region in (2+1)-flavor QCD at finite density. 

• Study by an improved Wilson quark action 
                                                      N. Yamada’s Talk (Wed) 
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