Two-flavor, scalar QED at finite density on the lattice

Alexander Schmidt,

Ydalia Delgado Mercado and Christof Gattringer.

supported by the $F \coprod F$

University of Graz

Institute of Physics

The sign problem of QCD

$$\langle A \rangle_{\rho} = \frac{\int D\sigma \ A[\sigma] \ \rho[\sigma]}{\int D\sigma \ \rho[\sigma]} \quad , \quad \rho = \det(M(\mu, \sigma))^2 \exp(-S[\sigma])$$

- $\mu > 0$ favors quarks over antiquarks
- Charge conjugation corresponds to complex conjugation $\rightarrow \det(M(\mu, \sigma)) \neq \det^*(M(\mu, \sigma))$

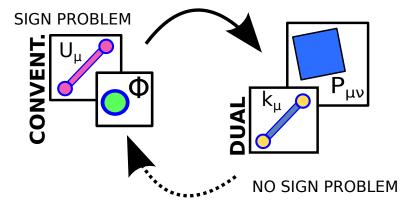
 ρ can not be interpreted as probability-weight anymore. :-(

Some possible ways out

- Expansion in chemical potential around $\mu = 0$
- Reweighting
- Rewriting to new degrees of freedom

What we are doing: Rewriting the action

We exactly map the system to a new equivalent representation where the sign problem is gone.



Lattice action

$$\begin{aligned} S_{G} &= -\beta \sum_{\vec{n}} \sum_{\mu < \nu} \operatorname{Re} U_{\vec{n},\mu} U_{\vec{n}+\hat{\mu},\nu} U_{\vec{n}+\hat{\nu},\mu}^{\star} U_{\vec{n},\nu}^{\star} \\ S_{H} &= \sum_{\vec{n}} \left[\kappa^{1} |\phi_{\vec{n}}^{1}|^{2} + \lambda^{1} |\phi_{\vec{n}}^{1}|^{4} + \kappa^{2} |\phi_{\vec{n}}^{2}|^{2} + \lambda^{2} |\phi_{\vec{n}}^{2}|^{4} \right] \\ &- \sum_{\vec{n}} \left[\sum_{\mu} \left(e^{\delta_{\mu 4}\mu^{1}} \phi_{\vec{n}}^{1\star} U_{\vec{n},\mu} \phi_{\vec{n}+\hat{\mu}}^{1} + e^{-\delta_{\mu 4}\mu^{1}} \phi_{\vec{n}}^{1\star} U_{\vec{n}-\hat{\mu},\mu} \phi_{\vec{n}-\hat{\mu}}^{1} \right) \right] \\ &- \sum_{\vec{n}} \left[\sum_{\mu} \left(e^{\delta_{\mu 4}\mu^{2}} \phi_{\vec{n}}^{2\star} U_{\vec{n},\mu}^{\star} \phi_{\vec{n}+\hat{\mu}}^{2} + e^{-\delta_{\mu 4}\mu^{2}} \phi_{\vec{n}}^{2\star} U_{\vec{n}-\hat{\mu},\mu} \phi_{\vec{n}-\hat{\mu}}^{2} \right) \right] \end{aligned}$$

Gauge field $U_{\vec{n},\mu}$ 1st flavor Higgs field $\phi_{\vec{n}}^1$ 2nd flavor Higgs field $\phi_{\vec{n}}^2$

Alexander Schmidt

A sketch of rewriting the Higgs-part of the action

A single nearest neighbor term:

$$Z \propto e^{\phi_x^{\star} U_{x,\nu} \phi_{x+\widehat{\nu}}} = \sum_{k_{x,\mu}} \frac{1}{(k_{x,\mu})!} \left[\phi_x^{\star} U_{x,\nu} \phi_{x+\widehat{\nu}} \right]^{k_{x,\mu}}$$

Idea: Use the expansion indices $k_{x,\mu}$ as new dual degrees-of-freedom and integrate out original d.o.f. ϕ_x :

$$Z = \sum_{\{\phi\}} \sum_{\{U\}} e^{-S_G(U) - S_H(U,\phi)} = \sum_{\{\phi\}} \sum_{\{U\}} e^{-S_G(U)} \sum_{\{k,l\}} F(U,\phi,k,l)$$
$$= \sum_{\{k,l\}} \sum_{\{U\}} e^{-S_G(U)} \underbrace{\sum_{\{\phi\}} F(U,\phi,k,l)}_{\{\phi\}}$$

perform this summation *

* Summing up we obtain constraints for the dual flux variables $k_{x,\mu}$.

Alexander Schmidt

A sketch of rewriting the gauge-part of the action

A single plaquette term from the gauge action:

$$e^{\beta U_{x,\mu} U_{\vec{n}+\hat{\mu},\nu} U_{x+\hat{\nu},\mu}^{\star} U_{x,\nu}^{\star}} = \sum_{p_{x,\mu\nu}} \frac{\beta^{p_{x,\mu\nu}}}{(p_{x,\mu\nu})!} \left[U_{x,\mu} U_{x+\hat{\mu},\nu} U_{x+\hat{\nu},\mu}^{\star} U_{x,\nu}^{\star} \right]^{p_{x,\mu\nu}}$$

Same idea again: Use the expansion indices $p_{k,\mu\nu}$ as new dual gauge-degrees-of-freedom and integrate out the original fields $U_{x,\mu}$:

$$Z = \sum_{\{k,l\}} \sum_{\{U\}} F(U,k,l) e^{-S_G(U)} = \sum_{\{k,l\}} \sum_{\{U\}} F(U,k,l) \sum_{\{p\}} B(U,p)$$
$$= \sum_{\{k,l\}} \sum_{\{p\}} \sum_{\{U\}} F(U,k,l) B(U,p)$$

perform this summation *

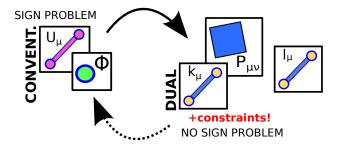
* We again obtain a constraint, this time combining dual flux variables $k_{x,\mu}$ and dual plaquette variables $p_{x,\mu\nu}$.

Alexander Schmidt

After rewriting the sign problem is just gone!

$$Z = \sum_{\{k,l\}} \sum_{\{p\}} FB(k,l,p) = \sum_{\{p,k^1,l^1,k^2,l^2\}} W(p,k,l) C_B(p,k^1,k^2) C_F(k^i)$$

Even at finite mu the dual weight $\mathcal{W}[\mathbf{p}, \mathbf{k}, \mathbf{l}]$ is positive and real! :-)



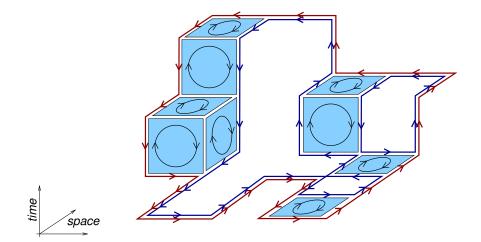
The dual constraints

• **Constraint I:** Conserved k-flux at sites: $\sum_{\mu} [k_{x,\mu}^i - k_{x-\widehat{\mu},\mu}^i] = 0$



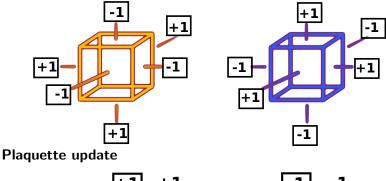
Constraint II: Vanishing combined plaquette- and k-flux along links:

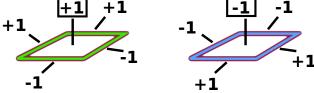
Example configuration



Update algorithm: Cube and plaquette update

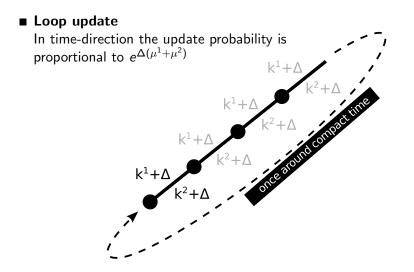
Cube update (updating only gauge degrees-of-freedom)





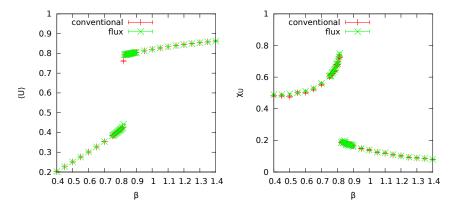
Alexander Schmidt

Update algorithm: Non-trivial loops coupling to μ

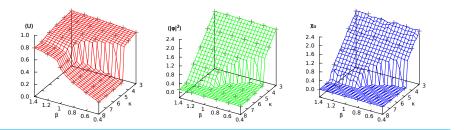


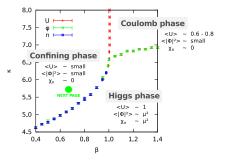
Comparing to conventional results

 $\lambda = 1.0 \ \kappa = 5.5$



The $\mu = 0$ phase diagram

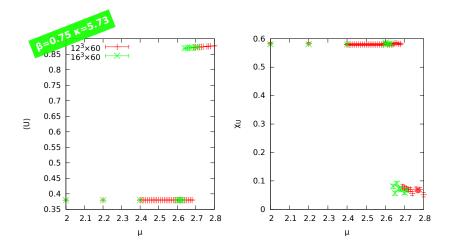




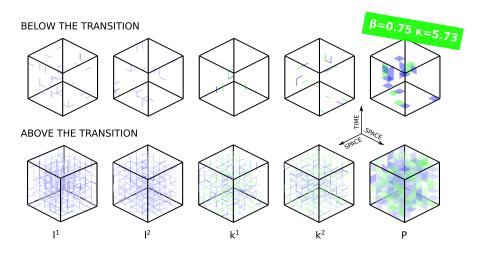
Alexander Schmidt

Results Finite density

A silver-blaze type phase transition



Looking at occupation numbers



- Complex action problems can be solved using dual representations of the action.
- The constraints for the dual variables can be handled both with local updates and with new techniques based on the worm algorithm concept.
- Interesting physics at finite μ , e.g. Silver Blaze phenomenon.
- The studied models could serve as testbeds for other finite density lattice approaches.