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Introduction The sign problem

The sign problem of QCD

〈A〉ρ =

∫
Dσ A[σ] ρ[σ]∫

Dσ ρ[σ]
, ρ = det(M(µ, σ))2 exp(−S [σ]) .

µ > 0 favors quarks over antiquarks

Charge conjugation corresponds to complex conjugation →
det(M(µ, σ)) 6= det∗(M(µ, σ))

ρ can not be interpreted as probability-weight anymore. :-(

Some possible ways out

Expansion in chemical potential around µ = 0

Reweighting

Rewriting to new degrees of freedom

Alexander Schmidt Two-flavor, scalar QED at finite density on the lattice



Introduction Possible ways out

What we are doing: Rewriting the action

We exactly map the system to a new equivalent representation where the
sign problem is gone.
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2-flavor scalar QED Action

Lattice action
U~n,µ ∈ U(1), φ~n ∈ C

SG = −β
∑
~n

∑
µ<ν

Re U~n,µ U~n+µ̂,ν U
?
~n+ν̂,µ U

?
~n,ν

SH =
∑
~n

[
κ1 |φ1

~n|
2 +λ1 |φ1

~n|
4 +κ2 |φ2

~n|
2 +λ2 |φ2

~n|
4

]

−
∑
~n

[∑
µ

(
eδµ4µ

1
φ1
~n
?
U~n,µ φ

1
~n+µ̂ + e−δµ4µ

1
φ1
~n
?
U?
~n−µ̂,µ φ

1
~n−µ̂

)]

−
∑
~n

[∑
µ

(
eδµ4µ

2
φ2
~n
?
U?
~n,µ φ

2
~n+µ̂ + e−δµ4µ

2
φ2
~n
?
U~n−µ̂,µ φ

2
~n−µ̂

)]

Gauge field U~n,µ 1st flavor Higgs field φ1
~n 2nd flavor Higgs field φ2

~n

Alexander Schmidt Two-flavor, scalar QED at finite density on the lattice



2-flavor scalar QED Rewriting

A sketch of rewriting the Higgs-part of the action

A single nearest neighbor term:

Z ∝ eφ
?
x Ux,ν φx+ν̂ =

∑
kx,µ

1

(kx ,µ)!

[
φ?x Ux ,ν φx+ν̂

] kx,µ

Idea: Use the expansion indices kx ,µ as new dual degrees-of-freedom and
integrate out original d.o.f. φx :

Z =
∑
{φ}

∑
{U}

e−SG (U)−SH(U,φ) =
∑
{φ}

∑
{U}

e−SG (U)
∑
{k,l}

F (U, φ, k , l)

=
∑
{k,l}

∑
{U}

e−SG (U)
∑
{φ}

F (U, φ, k , l)

︸ ︷︷ ︸
perform this summation ∗

∗ Summing up we obtain constraints for the dual flux variables kx ,µ.
Alexander Schmidt Two-flavor, scalar QED at finite density on the lattice



2-flavor scalar QED Rewriting

A sketch of rewriting the gauge-part of the action

A single plaquette term from the gauge action:

e β Ux,µ U~n+µ̂,ν U
?
x+ν̂,µ U?x,ν =

∑
px,µν

β px,µν

(px ,µν)!

[
Ux ,µ Ux+µ̂,ν U

?
x+ν̂,µ U

?
x ,ν

] px,µν

Same idea again: Use the expansion indices pk,µν as new dual
gauge-degrees-of-freedom and integrate out the original fields Ux ,µ:

Z =
∑
{k,l}

∑
{U}

F (U, k, l)e−SG (U) =
∑
{k,l}

∑
{U}

F (U, k , l)
∑
{p}

B(U, p)

=
∑
{k,l}

∑
{p}

∑
{U}

F (U, k, l)B(U, p)

︸ ︷︷ ︸
perform this summation ∗

∗ We again obtain a constraint, this time combining dual flux variables
kx ,µ and dual plaquette variables px ,µν .
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2-flavor scalar QED Rewriting

After rewriting the sign problem is just gone!

Z =
∑
{k,l}

∑
{p}

FB(k , l , p) =
∑

{p,k1,l1,k2,l2}

W(p, k, l) CB(p, k1, k2) CF (k i )

Even at finite mu the dual weight W[p, k, l] is positive and real! :-)
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2-flavor scalar QED Constraints

The dual constraints

Constraint I: Conserved k-flux at sites:
∑

µ [ k ix ,µ − k ix−µ̂,µ ] = 0

k

Constraint II: Vanishing combined plaquette- and k-flux along links:∏
x ,ν

(∑
ν<α

[
px ,να − px−α̂,να

]
−
∑
α<ν

[
px ,αν − px−α̂,αν

]
+ k1

x ,ν − k2
x ,ν

)
= 0

P k
P

P
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2-flavor scalar QED Constraints

Example configuration

spaceti
m

e
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Simulation Update algorithm

Update algorithm: Cube and plaquette update

Cube update (updating only gauge degrees-of-freedom)

-1

-1

+1

-1
+1

+1

Plaquette update

+1 +1

-1

-1

+1
-1 -1

+1

+1

-1
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Simulation Update algorithm

Update algorithm: Non-trivial loops coupling to µ

Loop update
In time-direction the update probability is
proportional to e∆(µ1+µ2)
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Results Zero chemical potential

Comparing to conventional results

λ = 1.0 κ = 5.5
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Results Zero chemical potential

The µ = 0 phase diagram
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Results Finite density

A silver-blaze type phase transition
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Results Finite density

Looking at occupation numbers
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Summary

Summary

Complex action problems can be solved using dual representations of
the action.

The constraints for the dual variables can be handled both with local
updates and with new techniques based on the worm algorithm
concept.

Interesting physics at finite µ, e.g. Silver Blaze phenomenon.

The studied models could serve as testbeds for other finite density
lattice approaches.
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