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1. Introduction 

Motivation  
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 CP violation (CPV) in QCD and BSM 

 EDM is sensitive to CPV in BSM  

 SM contribution is extremely small, 10-33 e･cm 

 Strong CP problem 

 There are many experimental plans of EDM 

 

 

 

    aim to 10-29 e・cm (present nEDM limit :                                 ) 

 BSM (like SUSY) predicts ~10-27 e･cm 

 Large uncertainty is hadron effect in low-energy scale. 

 Lattice QCD provides important information of BSM prediction. 

pEDM experiment @ BNL,  

nEDM experiment @ ORNL, ILL, FRM-2, FNAL, PSI/KEK/TRIUMF, … 

Charged particle (d, p)EDM @ COSY 

Lepton EDM @ J-PARC, FNAL 



1. Introduction 

Nucleon EDM in lattice QCD  

 θ term contribution 

 Renormalizable 

 Feasible study toward the BSM (quark EDM and chromo EDM) calculation 

 

 Nice check of uncertainties in quark model, BChPT 

 Some difficulties 

 Statistical noise 

 Gauge background (topological charge, sea quark) which are intrinsically noisy. 

 Disconnected diagram (flavor singlet) should include (In SU(3) limit this is 

vanishing. Study including disc. diagram is future work).  

 Systematic study 

 Finite volume effect may be significant. (e.g. BChPT discussion) 

 

 Chiral behavior(dN~O(m)) is also important check. 
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Bhattacharya et al, Lattice 2012, Lattice 2013 

O’Connell, Savage, PLB633, 319(2006), Guo, Meissner, 1210.5887 
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 Precise calculation of EDM in q term 
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 Precise calculation of EDM in q term 
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Chiral symmetry on the lattice, and control the O(a) lattice artifact. 

Good control of chiral behavior without counterterm (cf. Wilson-clover) 
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 Precise calculation of EDM in q term 

 Use of domain-wall fermion (DWF) 

Chiral symmetry on the lattice, and control the O(a) lattice artifact. 

Good control of chiral behavior without counterterm (cf. Wilson-clover) 

 Error reduction techniques 

 All-mode-averaging (AMA)  

 Efficient way to reduce the statistical error of correlator  
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 Precise calculation of EDM in q term 

 Use of domain-wall fermion (DWF) 

Chiral symmetry on the lattice, and control the O(a) lattice artifact. 

Good control of chiral behavior without counterterm (cf. Wilson-clover) 

 Error reduction techniques 

 All-mode-averaging (AMA)  

 Efficient way to reduce the statistical error of correlator  

 

 EDM form factor 

 Extraction from matrix element including CPV of θ angle 

 Extrapolation into physical kinematics, -q2 = 0 and m = mphy 

Blum, Izubuchi, ES, arXiv:1208.4349 [hep-lat], ES (lattice 2012) 



2. EDM calculation on the lattice 

Domain-wall fermion 

 Chiral symmetry 

 L, R fermion is localized on boundaries 

    ⇒ Chiral symmetry is realized (if Ls→∞). 

 Remaining good chiral symmetry 

    mres ~ exp(-Ls ) 

 Reasonable computational cost 

 RBC/UKQCD collaboration 

 Generation of Nf = 2+1 configurations. 

 Various lattice size, lattice cut-off, quark mass are available.  

 Many studies of Keon physics, nucleon physics, finite temperature , … 

 

1 2 Ls/2 Ls... ...

q(L) q(R)

T T T
.....
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[Blum Soni, (97), CP-PACS(99),  RBC(00), 

RBC/UKQCD. (05--) ] 



2. EDM calculation on the lattice 

Error reduction techniques 

 Covariant approximation averaging (CAA) 

 For original correlator O, (unbiased) improved estimator is defined as 
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Blum, Izubuchi, ES, 1208.4349,  

ES (lattice 2012),  

Chulwoo, plenary on Fri 
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 Improved error 
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Low-mode deflation 

Relaxed CG solusion 

Nl 
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2. EDM calculation on the lattice 

Error reduction techniques 

 Covariant approximation averaging (CAA) 

 For original correlator O, (unbiased) improved estimator is defined as 

 

 

 <O> = <O(imp)> if approximation is covariant under lattice symmetry g  

 Improved error 

 Computational cost of O(imp) is cheap. 

 All-mode-averaging (AMA) 

 Relaxed CG solution for approximation  

 

 

 Pn(l) is polynomial approximation of 1/l 

  Low mode part : # of eigen mode 

  Mid-high mode :  degree of poly. 
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Low-mode deflation 

Relaxed CG solusion 

Nl 

Blum, Izubuchi, ES, 1208.4349,  

ES (lattice 2012),  

Chulwoo, plenary on Fri 



 EM Matrix element 

 

 

 

 

 

 

2. EDM calculation on the lattice 

EDM Form factor  
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ES, et al., Phys. Rev. D72, 014504 (2005), 

Berruto, et al., Phys. Rev. D73, 05409 (2006). 



 EM Matrix element 

 

 

 

 

 

 

2. EDM calculation on the lattice 

EDM Form factor  
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CPV phase aN in nucleon propagator 

ES, et al., Phys. Rev. D72, 014504 (2005), 

Berruto, et al., Phys. Rev. D73, 05409 (2006). 
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CPV phase aN in nucleon propagator 

ES, et al., Phys. Rev. D72, 014504 (2005), 

Berruto, et al., Phys. Rev. D73, 05409 (2006). 



 EM Matrix element 

 

 

 

 

 

 

2. EDM calculation on the lattice 

EDM Form factor  
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Computation  

Subtraction 

Extraction  

CPV phase aN in nucleon propagator 

ES, et al., Phys. Rev. D72, 014504 (2005), 

Berruto, et al., Phys. Rev. D73, 05409 (2006). 



 EM Matrix element 

 

 

 

 

 

 

2. EDM calculation on the lattice 

EDM Form factor  

•  Subtraction of CP-odd phase, aN, in n propagator and CP-even part F1,2 
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Computation  

Subtraction 

Extraction  

CPV phase aN in nucleon propagator 

ES, et al., Phys. Rev. D72, 014504 (2005), 

Berruto, et al., Phys. Rev. D73, 05409 (2006). 



3. (Preliminary) Results 

Parameters  
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 DWF  

 243×64 lattice, a-1 = 1.73 GeV (~3 fm3 lattice) 

 Ls = 16 and amres = 0.003 

 m = 0.005, 0.01 corresponding to mp = 0.33, 0.42 GeV 

 Two temporal separation of N sink and source in 3 pt. function 

     tsep = 12 (tsource = 0, tsink = 12), tsep = 8 (tsource = 0, tsink = 8) 

 # configs = 751 (m=0.005), 700 (m=0.01) [tsep = 12] 

    # configs = 180 (m=0.005) [tsep = 8] 

 AMA 

 # of low-mode : Nl = 400 (m=0.005),  180 (m=0.01) 

 Stopping condition, |r| < 0.003 

 NG = 32 (2 separation for spatial, 4 separation for temporal direction of 

source localtion) → effectively O(104) statistics 



3. (Preliminary) Results 

aN 
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 Projection with g5 for 2 pt with Q charge, global fitting with  

 

 By using AMA, this factor is determined within15 % error.  

 It does not depend on smearing and momentum, but mass dependence is 

not so clear. 



3. (Preliminary) Results 

Subtraction term and 3pt function 
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 Splitting EDM form factor into two parts: 

 

 Fa is good precision, and fluctuation of FQ is large. 



3. (Preliminary) Results 

Comparison with m = t, z 
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 EDM form factor is given from two directions of EM current 

 Two signals are consistent, and data in t direction is much stable.  



3. (Preliminary) Results 

Comparison with different tsep 
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 The sink and source separation in 3pt function enables us to control the 

statistical noise and excited state contamination 

 Short: statistical fluctuation < excited state contamination 

 Long: statistical fluctuation > excited state contamination 

 Comparison  

tsep = 12 (blue),  

        [Nconf = 751] 

tsep = 8 (green) 

        [Nconf = 180] 

•  Good consistency 

between them. 

•  Precision in tsep=8 is 

much better. 



3. (Preliminary) Results 

-q2 = 0 extrapolation 
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 Fitting data of EDM form factor at each momenta. 

 Open(tsep = 8),  

     filled (tsep = 12) 

 Fitting function 

    3 point linear :  

     -q2 < 0.55 GeV2 

    2 point linear:  

     -q2 < 0.4 GeV2 

 Estimate of systematic 

    error of extrapolation 



3. (Preliminary) Results 

Mass dependence 

27 

 Comparison with full QCD results 

 DWF results are in the lightest quark mass. 

 Statistical error is dominant rather than systematic one. 

 Central value is 10 times larger than models. 

Models 



3. (Preliminary) Results 

Statistical error 
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 Comparison between AMA error reduction and number of configurations. 

 Number of configurations : reduce stat. error and relating to Q distribution 

    AMA error reduction : reduce stat. error 

 ?? % :  

    Error rate 

    = Error(full)/Error(N) 

 AMA works well 

 Reduction rate when  

    increase of confgs.  

    is slightly better. 

     
Full statistics → 

w/o correlation  

36% 

52% 

73% 

35% 

50% 



 Nucleon EDM in Nf = 2+1 DWF in q vacuum 

 Signal of EDM within 40% statistical error using AMA techniques. 

 3-pt function is still noisy. 

 Short tsep allows us to reduce the statistical error without large 

excited state contamination effect.  

4. Summary 

Summary and future plan 
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 Nucleon EDM in Nf = 2+1 DWF in q vacuum 

 Signal of EDM within 40% statistical error using AMA techniques. 

 3-pt function is still noisy. 

 Short tsep allows us to reduce the statistical error without large 

excited state contamination effect.  

 (Near) physical point of DWF configurations 

 Ensembles near physical points and large volume are available.  

 AMA with Möbius-DWF approximation is helpful.  

 Remove chiral extrapolation → less than 10% precision 

4. Summary 

Summary and future plan 

Lattice size Physical size a Ls  Gauge action Pion mass 

323×64 4.6 fm3 0.135 fm 32 DSDR 171 -- 241 MeV 

483×96 5.5 fm3 0.115 fm 16 Iwasaki 135 MeV 
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Thank you for your attention ! 



Backup  
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Nucleon EDM in the SM 
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 CKM phase in EDM 

 No CPV phase in 1-loop (|Vdq|
2 : no phase) 

    and 2-loop diagram (unitarity). 

 Three-loop order(short) or pion loop correction (long) 

 

 

 

 q term in the QCD Lagrangian 

Renormalizable and CP-violating from in topological charge density. 

 

 

 q term has been estimated as  

 Unnatural cancellation (strong CP problem) 

Crewther, et al. (1979), Ellis, Gaillard (1979)  

6-order magnitude below the experimental upper limit.  



 Possible higher dimension operators 

 In supersymmery (SUSY) model there is 

    CPV phase from 1-loop (Im(gL gR
*)≠0) 

 

 CPV effective Hamiltonian with higher dimension than q term 

 

 

 Contribution to nEDM in low energy model 

Nucleon EDM in the BSM 

: Quark-photon (5-dim) 

: Quark-gluon (5-dim) 

: Pure gluonic (6-dim) 

Hisano, Shimizu (04),  Ellis, Lee, Pilaftsis (08), Hisano, Lee, Nagata, Shimizu (12) 

BChPT: QCD sum rule: 

… 
Pospelov, Ritz,  Hisano, 

Shimizu, Nagata, Lee, Yang, 

… 

Mereghetti, Vries, 

Hockings, Maekawa, 

Kolck, Timmermans, ... 
… 
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 Spectrum method 
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 Form factor 

1. ES, et al., for CP-PACS collaboration, Phys. Rev. D72, 014504 (2005). 

2. Berruto, et al. for RBC collaboration, Phys. Rev. D73, 05409 (2006). 

3. ES et al., Lattice 2008. 

 Imaginary q  

1. T. Izubuchi, Lattice 2007. 

2. Horsley et al., arXiv:0808.1428 [hep-lat] 

Lattice methods on EDM 

35 



EM form factor 
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 BChPT analysis 

Volume effect ? 

Guo, Meissner, 1210.5887 

Simulation point 

In LO, NLO BChPT analysis, there may 

be more than 20% finite size effect. 

CP violating coupling 


