Large-scale simulations with chiral symmetry

T. Kaneko for JLQCD Collaboration

Lattice 2013, Mainz, July 30, 2013

	introduction	setup
1. introduction		

chiral fermions

• theoretically clean : straightforward for various subjects

overlap simulations w/ exact symmetry $|1 - \text{sgn}[H_W]|^2 \lesssim 10^{-8}$

- QCD vacuum ($\langle \bar{q}q \rangle$, χ_t , $\Pi_{\{VV,AA\}}$, ...)
- light hadron physics $(F_{\{K,\pi\}}, F_V^{\{\pi,K,K\pi\}}, \pi \to \gamma\gamma, \langle N | \bar{q}q | N \rangle, ...)$
 - \Rightarrow talks and poster by X. Feng and T. Iritani
- computationally demanding

overlap : $\times 100$; standard DWF : $m_{\rm res} \approx$ a few MeV @ $a^{-1} \approx 2$ GeV

not unique

$$D_{\text{eff}} = \frac{1}{2} \left(1 + \gamma_5 \operatorname{sgn}[H_X] \right)$$

this talk

- a comparative study of 5D domain-wall-type formulations computationally cheap w/ negligibly small $m_{\rm res} \ll m_{ud,{\rm phys}}$
- status of production runs with our choice of action

comparative study

2.1 setup

DWF formulations

Kaplan, 1992; Shamir, 1993; Furman-Shamir, 1995; Edwards-Heller 2001; Boriçi, 1999; Chiu, 2003; Brower-Neff-Orginos, 2005, ...

$$\begin{split} D_{DW} &= D_{+,s} \delta_{s,s'} + D_{-,s} P_{+} \delta_{s-1,s'} + D_{s,-} P_{-} \delta_{s+1,s'} \quad \text{w/} \quad D_{\pm,s} = c_{\pm,s} D_W \pm 1 \\ \Rightarrow \quad D_{\text{eff}} &= \frac{1}{2} \left(1 + \gamma_5 \text{sgn}[H_M] \right) \end{split}$$

opular choices

$$\begin{split} H_M &= \gamma_5 \frac{(c_+ + c_-)D_W}{2 + (c_+ - c_-)D_W} \quad \rightarrow \quad H_W, \quad H_T = \gamma_5 \frac{D_W}{2 + D_W}, \quad 2H_T \\ \text{sgn}[H_M] \quad \rightarrow \quad \text{Zolotarev}, \quad \text{polar} = \frac{(1 + H_M)^{N_5} - (1 - H_M)^{N_5}}{(1 + H_M)^{N_5} + (1 - H_M)^{N_5}} \end{split}$$

• test 8 choices w/o and w/ (stout) smearing

thin-link : H_W + Zolo(tarev), H_T + Zolo, H_T + polar, $2H_T$ + polar $N_{smr} = 3$: H_W + Zolo, H_T + polar, $2H_T$ + polar $N_{smr} = 6$: $2H_T$ + polar

 \Rightarrow MD efficiency, $m_{\rm res}$, topological tunneling

2.1 setup

setup

• $N_f = 2$

- tree-level Symanzik gauge
 - compatible w/ $O(a^2)$ improvements for heavy quarks \Rightarrow talk by Y-G.Cho
- single small volume : $16^3 \times 32 \times 12$
- (roughly) constant physics : $a^{-1} \sim 2 \text{ GeV}, M_{\pi} \sim 300 600 \text{ MeV}$
- leap-frog / multi-time-scale MD : $N_{\rm MD,gauge} = 10 N_{\rm MD}$

•
$$\tau = 1$$
, $N_{\rm MD} \Rightarrow P_{\rm HMC} \approx 0.7 - 0.9$

• 1000 traj at each (β , m_{ud})

MD forces

- no big difference in gauge force
- fermionic force (strongly) depends on choice of quark action

#MD steps to achieve $P_{\rm HMC} = 0.80$: $N_{\rm MD, P=0.80}$

•
$$P_{\rm HMC} = \operatorname{erfc}(\sqrt{\langle \Delta H \rangle}/2)$$

$$\odot \ \langle \Delta H \rangle \!\propto\! 1/N_{\rm ME}^4$$

$$\Rightarrow N_{\rm MD,P_{HMC}=0.8}$$

• $H_W \rightarrow (2)H_T$, Zolo \rightarrow polar $\Rightarrow \times 1.5 - 2.0$ speed-up

- no big difference between H_T and $2H_T$
- smearing \times 3 \Rightarrow \times 2 speed-up; no significant acceleration w/ larger $N_{\rm smr}$

iteration count for CGNE : Ninv

• decreases by $H_W \rightarrow (2)H_T$, Zolo \rightarrow polar, $N_{\rm smr} = 0 \rightarrow 3$

• no big difference between H_T and $2H_T$ / $N_{\rm smr}$ = 3 and 6

a measure of cost / traj : $N_{\text{MD},P=0.8}N_{\text{inv}}$

- H_W + Zolo is very costly
- H_W + Zolo \rightarrow (2) H_T + polar \Rightarrow × 6 speed-up
- smearing $\Rightarrow \times 3-4$ speed-up

2.3 residual quark mass

low-lying mode distribution for kernels

lowest 100-150 eigenmodes

• $|1 - \text{polar}^2| \gg |1 - \text{Zolo}^2|$ @ $|\lambda| \lesssim 0.3$

• less low-modes in this region by $H_T \rightarrow 2H_T$ and larger $N_{\rm smr}$

2.3 residual quark mass

residual quark mass $m_{ m res}$

- Zolotarev \Rightarrow least $m_{\rm res}$ at given N_5 , $N_{\rm smr}$, but expensive...
- H_T + polar \Rightarrow an order magnitude larger $m_{\rm res}$
- $m_{\rm res} < 1$ MeV with $2H_T$ + polar + $N_{\rm smr} = 3$
 - halved by $H_T \rightarrow 2H_T$ (Brower-Neff-Orginos, 2012)
 - $N_5 = O(10)$ is sufficient
- larger $N_{\rm smr}$ is better, if there is no side effects
- more detailed discussion (N_5 dependence, ...) \Rightarrow poster by S.Hashimoto

2.4 topological tunneling

topological charge history

from $F\tilde{F}$ + cooling

- topology changes with any of tested formulations
- $H_T \rightarrow 2H_T$, larger $N_{\rm smr} \Rightarrow$ less near-zero modes ... and less tunneling? $\Rightarrow no @ a^{-1} \approx 2 \text{ GeV}$

production runs

3.1 plan

project : light + heavy quark physics ... on fine lattices w/ good chiral symmetry

• $N_f = 2 + 1 \text{ QCD}$

- tree-level Symanzik gauge + DW quarks
 - $2H_T$ + polar + $N_{\rm smr}$ = 3
 - $m_{\rm res} \sim 0.1 \; {\rm MeV} \ll m_{ud,{\rm phys}}$
- 4 lattice spacings : $a^{-1} \approx 2.4, 3.0, 3.6, 4.8 \text{ GeV}$

• $O((am_c)^2) \sim 10 - 30\%$ $\Rightarrow O((am_c)^4) \sim 1 - 9\%, \quad O(\alpha(am_c)^2) \sim 3 - 9\%$

• $M_{\pi}L \gtrsim 4$, $32^3 \times 64 - 64^3 \times 128$

- $M_{\pi} = 500, 400, 300$ MeV and smaller ($\lesssim 220$ MeV)
- 3000 HMC trajectories or more

runs @ $a^{-1} \simeq 2.4$ and 3.6 GeV are in progress

SuperKEKB/Belle-II @ KEK

3.2 algorithm

- RHMC for strange flavor (Horváth-Kennedy-Sint, 1998; Clark-Kennedy-Sroczynski, 2004)
- Hasenbusch preconditioning for light two flavors

(Hasenbusch, 2001; Hasenbusch-Jansen, 2003)

$$\det [D(m_{ud})]^2 \det [D(m_s)] = \det \left[\frac{D(m_{ud})}{D(m')}\right]^2 \det [D(m_s)] \det \left[\frac{D(m')}{D(m')}\right]^2$$
$$= \det [D[\phi_1]]^2 \det [D[\phi_2]] \det [D[\phi_3]]^2$$

• leap-frog (2LF) \Rightarrow Omelyan (2MN) (Omelyan, 2003; Takaishi-de Forcrand, 2005)

- 4 MD step sizes for $\phi_{1,2,3}$ and gauge
- we are still tuning algorithm / code...
 - less accurate $(D^{\dagger}D)^{-1}$, D^{-1} during MD, ...
- machine : IBM BlueGene/Q @ KEK
 - I.2 PFLOPS / 6 racks
 - ≈ 8 % sustained speed for HMC (being improved)

more details \Rightarrow poster by G.Cossu

BlueGene/Q @ KEK

3.3 status

$32^3 \times 64 \times 12$ @ $a^{-1} = 2.4$ GeV

m_{ud}	m_s	MD	$N_{\rm MD}$	traj	$P_{\rm HMC}$	$\langle \Delta H \rangle$	$\langle e^{-\Delta H} \rangle$	min/traj
0.019	0.040	2LF	10	3000	0.78(1)	0.19(1)	0.99(1)	2.7
0.012	0.040	2LF	13	2000	0.78(1)	0.17(1)	1.00(1)	3.5
0.012	0.040	2MN	3	1000	0.89(1)	0.07(2)	1.01(1)	2.0
0.007	0.040	2LF	16	1000	0.74(1)	0.23(2)	1.04(3)	4.4
0.007	0.040	2MN	4	2000	0.90(1)	0.06(1)	1.00(1)	2.6
0.019	0.030	2LF	10	3000	0.79(1)	0.17(1)	1.00(1)	2.8
0.012	0.030	2LF	16	2000	0.79(1)	0.14(1)	1.02(2)	3.6
0.012	0.030	2MN	3	1000	0.88(1)	0.10(3)	1.00(2)	2.0
0.007	0.030	2LF	16	2000	0.72(1)	0.27(2)	1.00(2)	4.5
0.007	0.030	2MN	4	1000	0.89(1)	0.08(2)	0.99(1)	2.6

- leap-frog (2LF) \rightarrow Omelyan (2MN) $\Rightarrow \times 2$ speed-up
- we have accumulated 3000 traj. @ $M_{\pi} \simeq 300, 400, 500 \text{ MeV}$
 - our choice of action \Rightarrow 1 month job on BG/Q @ KEK

3.3 status

$48^3 \times 96 \times 8 @ a^{-1} = 3.6 \text{ GeV}$

m_{ud}	m_s	m'	$N_{\rm MD}$	traj	$P_{\rm HMC}$	$\langle \Delta H \rangle$	min/traj
0.0120	0.0250	0.10	4	430	0.84(2)	0.10(2)	3.6
0.0080	0.0250	0.08	4	330	0.85(2)	0.06(2)	4.2
0.0042	0.0250	0.04	4	235	0.92(3)	0.04(2)	5.9
0.0120	0.0180	0.10	4	-	-	-	-
0.0080	0.0180	0.08	4	260	0.86(1)	0.05(1)	4.3
0.0042	0.0180	0.04	4	280	0.86(3)	0.02(2)	6.0

- preliminary runs w/ $\tau = 1$
 - $\Rightarrow \tau = 2$ to reduce auto-correlation
- tune m' at each m_{ud}
 - \Rightarrow small m_{ud} -dep. of $N_{
 m MD}$ w/ $P_{
 m HMC}\gtrsim 0.8$
- will be a two-month job @ KEK
- observables from these runs \Rightarrow talk by J.Noaki

3.4 chiral symmetry violation

residual mass

3.5 auto-correlation

topological charge history

- (much) larger autocorrelation time at smaller a (Q, t^2E @ large t)
- pure gauge test : more tunneling w/ larger au

(Meyer et al., 2006; Schäfer-Sommer-Virotta, 2010; Lüscher-Schäfer, 2011)

• τ has been doubled ($\tau = 1 \rightarrow 2$) and accumulating statistics...

4. summary

JLQCD's new project of large-scale simulations with good chiral symmetry

- systematic study on MD efficiency, $m_{\rm res}$, ... $\Rightarrow 2H_T$ + polar + $N_{\rm smr}$ = 3
 - $\bullet~$ computationally cheap chiral fermions : 3000 traj on $48^3 \times 96 \times 8$ / 2 months
 - small chiral symmetry violation : $m_{
 m res} \lesssim 0.1 \ {
 m MeV} @ a^{-1} \gtrsim 3 \ {
 m GeV}$

⇒ poster by S.Hashimoto (Tuesday)

- production runs at $a^{-1} = 2.4 4.8$ GeV and $M_{\pi} = 500, 400, 300$ and smaller
 - study QCD vacuum, light and heavy quark physics, ...
 - spectrum and Wilson flow \Rightarrow talk by J.Noaki (Monday, 2G)
- still improving simulation method and code
 - improving/testing heavy quark formulations \Rightarrow talk by Y-G.Cho (Thursday, 8G)
 - reweighting to overlap
 - optimization of code

- ⇒ talk by Y-G.Cho (Thursday, 8G) in collaboration with UKQCD
- ⇒ talk by H.Fukaya (Friday, 9D)
- ⇒ poster by G.Cossu (Tuesday)