

Numerical studies with Minimally Doubled Fermions

Non-perturbative tuning of renormalisation coefficients

Johannes Weber¹² (speaker) Stefano Capitani¹ Hartmut Wittig¹

¹Johannes Gutenberg-Universität Mainz Institute for Nuclear Physics

²University of Tsukuba Graduate School of Pure and Applied Sciences

July 30th 2012, 31st International Symposium on Lattice Field Theory

Overview

- Karsten-Wilczek Fermions: review of analytic results
- ② Non-perturbative renormalisation: tuning of the anisotropy
- Sumerical results: chiral behaviour of the pseudoscalar ground state
- Summary and Outlook

< ロ > < 回 > < 回 > < 回 > < 回 >

Analytic results

The Karsten-Wilczek action and its symmetries [e.g. L.H. Karsten, Phys. Lett. B104 (1981) 315; F. Wilczek, Phys.Rev. Lett. 59 (1987) 2397]

The fermionic part of the Karsten-Wilczek action reads

$$S_{\alpha}^{KW} = \sum_{x} \sum_{\mu} \frac{1}{2a} \left(\overline{\psi}_{x} \gamma_{\mu} U_{\mu}(x) \psi_{x+\hat{\mu}} - \overline{\psi}_{x+\hat{\mu}} \gamma_{\mu} U_{\mu}^{\dagger}(x-\hat{\mu}) \psi_{x} \right) \\ - \sum_{\mu \neq \alpha} i \frac{\zeta}{2a} \left(\overline{\psi}_{x} \gamma_{\alpha} U_{\mu}(x) \psi_{x+\hat{\mu}} + \overline{\psi}_{x+\hat{\mu}} \gamma_{\alpha} U_{\mu}^{\dagger}(x-\hat{\mu}) \psi_{x} \right) + \left(\overline{\psi}_{x} \left(\frac{i}{a} 3\zeta \gamma_{\alpha} + m_{0} \right) \psi_{x} \right).$$
(1)

- The two zero modes of the free, massless KW action, $k_{\alpha} = \{0, \frac{\pi}{a}\}, k_{\mu} = 0 \forall \mu \neq \alpha$, are identified with two degenerate flavours of quarks in the naïve continuum limit.
- The same naïve CL requires mixing of tastes ψ_1, ψ_2 : [e.g. M.Pernici, Phys. Lett. B346 (1995) 99; B. Tiburzi, Phys.Rev. D82 (2010) 034511]

$$\psi_{1}(k) \equiv \begin{cases} \psi(k), & -\frac{\pi}{2a} < k_{\alpha} \le \frac{\pi}{2a} \\ 0, & \text{else} \end{cases}, \quad \psi_{2}(l) \equiv \begin{cases} \mathcal{R} T_{\pi}^{\alpha} e^{i\delta} \psi(l), & \frac{\pi}{2a} < l_{\alpha} + \frac{\pi}{a} \le \frac{3\pi}{2a} \\ 0, & \text{else} \end{cases}, \quad (2)$$

with rotation matrix $\mathcal{R} = i\gamma_{\alpha}\gamma_5 = \mathcal{R}^{\dagger} = \mathcal{R}^{-1}$, momentum shift $T_{\pi}^{\alpha}f(k_{\alpha}) \equiv f(k_{\alpha} + \frac{\pi}{s})T_{\pi}^{\alpha}$ and unconstrained phase shift δ . The Pauli matrix τ_1 is represented ($\delta = 0$) by $\tau_1 = \mathcal{R}T_{\pi}^{\alpha}$.

- Pending on commutativity with $\tau_1 = \mathcal{RT}_{\pi}^{\alpha}$, operators are isospin singlet or isospin non-singlet (τ_3). KW-term $\propto \zeta$ is **non-singlet**, **anisotropic** and **violates** *T*-**parity**. [e.g. P.F. Bedaque, M.I. Buchoff, B.C. Tiburzi and A. Walker-Loud, Phys. Rev. D78 (2008) 449]
- Conserved point-split vector and axial-vector currents are obtained using WTI.
 [e.g. S. Capitani, J. Weber, H. Wittig, Phys.Lett. B681 (2009) 105-112]

JG

Counterterm structure and anisotropy

 Interactions cause operator mixing ⇒ counterterms needed to restore isotropy to CL. [e.g. M.Pernici, Phys. Lett. B346 (1995) 99; S. Capitani, M. Creutz, J. Weber, H. Wittig, JHEP 1009 (2010) 027]

$$c \times \overline{\psi}_{x} \frac{i}{a} \gamma_{\alpha} \psi(x), \tag{3}$$

イロト 不得 トイヨト イヨト

$$d \times \frac{1}{2a} \left(\overline{\psi}_{x} \gamma_{\alpha} U_{\alpha}(x) \psi_{x+\hat{\alpha}} - \overline{\psi}_{x+\hat{\alpha}} \gamma_{\alpha} U_{\alpha}^{\dagger}(x-\hat{\alpha}) \psi_{x} \right), \tag{4}$$

$$d_P \times \frac{\beta}{N_c} \sum_{\mu} \Re \, Tr_c \, P_{\alpha\mu}(x). \tag{5}$$

- WTI currents are conserved even before inclusion of counterterms.
- The self-energy at 1-loop level has anisotropic contributions,

$$\Sigma = \Sigma_1 i \not p + \Sigma_2 m_0 + d_{1L} i (\gamma_\alpha p_\alpha) + c_{1L} \frac{i}{a} \gamma_\alpha.$$
(6)

• The 1-loop fermionic contribution of the vacuum polarisation has an anisotropic part, [e.g. S. Capitani, M. Creutz, J. Weber, H. Wittig, JHEP 1009 (2010) 027]

$$\left(\rho_{\mu}\rho_{\nu}(\delta_{\alpha\mu}+\delta_{\alpha\nu})-\delta_{\mu\nu}(\rho^{2}\delta_{\alpha\mu}\delta_{\alpha\nu}+\rho_{\alpha}^{2})\right)\times d_{P,\,1L}.$$
(7)

• Removing the anisotropies (for $\zeta = +1$) requires tuning the counterterms like

$$c = c_{1L} = -29.5320 C_F b, \ d = d_{1L} = -0.12554 C_F b, \ d_P = -12.69766 C_2 b, \ b = \frac{g_0^2}{16\pi^2}.$$
 (8)

JG

Isospin structure of counterterms

• Only the renormalisation constant c inherits isospin structure and T-parity violation:

$$c_{1L}(-\zeta) = -c_{1L}(\zeta), \ d_{1L}(-\zeta) = +d_{1L}(\zeta), \ d_{P,1L}(-\zeta) = +d_{P,1L}(\zeta).$$
(9)

• Boosted perturbation theory predicts $b \to b/(U_0^4)$. Thus,

β	U_0^4	<i>c</i> _{1<i>L</i>}	C BPT	d _{1L}	d _{BPT}	d _{P, 1L}	d _{P, BPT}
6.0	0.594	-0.249	-0.420	-0.00106	-0.00179	-0.0893	-0.150
6.2	0.614	-0.241	-0.393	-0.00103	-0.00167	-0.0865	-0.141

Issues with simulations

- Fermion momentum and taste cannot be fixed on internal lines, e.g. n-p. propagators.
- Separation of the influence of different counterterms seems a priori unclear.

Whereas the KW action seems very similar to the Wilson action in its form, the choice of a feasible non-perturbative tuning strategy is subtle and the interpretation of hadronic content of correlation functions is intricate.

Non-perturbative renormalisation strategy: anisotropy of the transfer matrix

- Correlation functions depend on interpolating operators and on the transfer matrix.
- Euclidean components of the transfer matrix differ if the action is anisotropic.
- Unwise choice of interpolating operators can generate additional anisotropies.

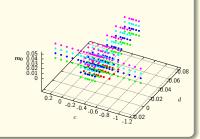
Implementation of the strategy: parameter scans in the quenched approximation

- Four parameters in the quenched approximation: β , m_0 , c, d.
- $\bullet\,$ Perturbative results in the chiral limit \Rightarrow comparison requires chiral extrapolation.

The third counterterm

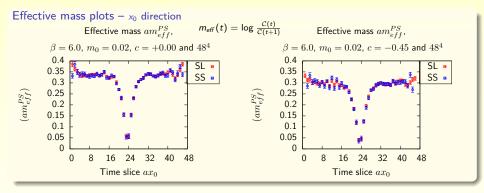
- Gauge field anisotropy due to feedback from fermion loops, needs dynamical fermions.
- Variation of d_P until the anisotropy of plaquettes vanishes tunes the 3rd parameter:

$$\sum_{\mu \neq \alpha} \Re \operatorname{Tr}_{c} \left(P_{\alpha \mu}(\mathbf{x}) - \sum_{\nu \neq \mu, \alpha} P_{\nu \mu}(\mathbf{x}) \right)^{!} = 0.$$
(10)


イロト 不得 トイヨト イヨト

Parameter space scans

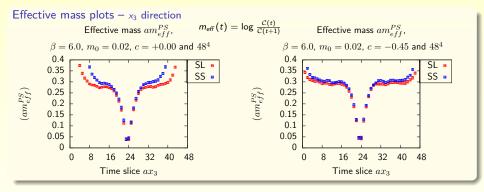
- Maximally symmetric lattice to avoid accidental anisotropic effects due to euclidean lattice geometry
- Sufficient size to avoid finite volume effects
- Scan of relevant parameter c with heavy quark for fixed choice of marginal parameter d(= 0.0)
- Lowering of quark mass in order to check persistence of pattern towards chiral limit
- Scan of marginal parameter d in r.o.i. for c


イロト 不得下 イヨト イヨ

Analysis of correlation functions - non-trivial issues

- T parity violated forwards and backwards masses and spectral weights unequal?
- Anisotropic action different spectral weights for different euclidean components?
- **(3)** Arbitrariness of the **Wilczek parameter** ζ how do choices of ζ affect the spectrum?

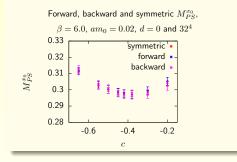
NP renormalisation



Broken *T*-parity could not be disentangled from fluctuations of effective masses.

Sink-smeared x₀-correlator yields results compatible with local sink.

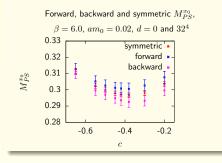
NP renormalisation



Broken *T*-parity could not be disentangled from fluctuations of effective masses.

- 2 Sink-smeared x_0 -correlator yields results compatible with local sink.
- Sink-smeared x₃-correlator not compatible with local sink due to lattice artifacts?
- Ground state plateau of x₃-correlator is very short before tuning.

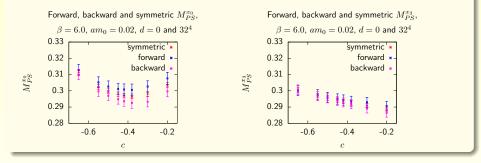
Violation of *T* parity – obstacle or tuning criterion?



Assumption: mass difference between forward and backward modes as tuning criterion

Separate exponentials for forward and backward propagating states

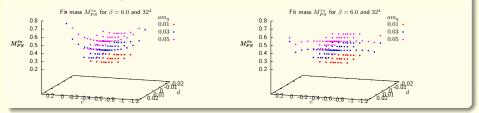
Violation of T parity – obstacle or tuning criterion?



Assumption: mass difference between forward and backward modes as tuning criterion

- Separate exponentials for forward and backward propagating states
- Oiscrepancy depends strongly on fit range contribution to systematic error

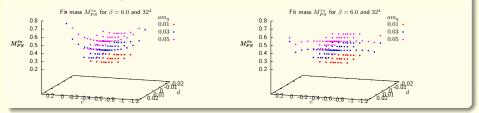
Violation of T parity – obstacle or tuning criterion?



Assumption: mass difference between forward and backward modes as tuning criterion

- Separate exponentials for forward and backward propagating states
- Oiscrepancy depends strongly on fit range contribution to systematic error
- **(3)** Discrepancy in $M_{PS}^{x_3}$ as well **unrelated** to **violated** T-**parity** but large error source

Masses from fits to 2-point correlators


Measurement of PS 2-pt. correlator in x₀ and x₃ directions without sink smearing
 Study of correlators C^{x_µ}_{PS}(t) with cosh, two separate exponentials with like or unlike masses

$$C_{PS}(t) \equiv A_f e^{-m_f t} + A_b e^{-m_b (T-t)}$$
(11)

・ロト ・日 ・ ・ ヨ ・ ・

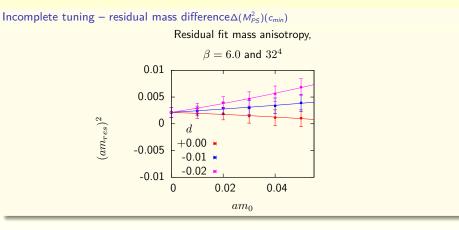
Masses from fits to 2-point correlators


Measurement of PS 2-pt. correlator in x₀ and x₃ directions without sink smearing
 Study of correlators C^{xµ}_{PS}(t) with cosh, two separate exponentials with like or unlike masses

$$C_{PS}(t) \equiv A_f e^{-m_f t} + A_b e^{-m_b(T-t)}$$
(11)

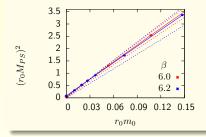
イロト イポト イヨト イヨト

 Quantization of χ²/dof for C^{x3}_{PS} outside of r.o.i. – extrapolation region limited
 Tuning criterion: mass difference between pseudoscalar correlators in different directions Δ(M²_{PS}) = (M^{x0}_{PS})² - (M^{x3}_{PS})² (12)



Quadratic extrapolation of $(M_{PS})^2$ for different quark masses and marginal parameters *d* **Analytic determination** of c_{min} with minimal $\Delta(M_{PS}^2) = (M_{PS}^{x_0})^2 - (M_{PS}^{x_0})^2$ without further fit **Chiral extrapolation** of c_{min} – dependence on *d* overshadowed by statistical errors

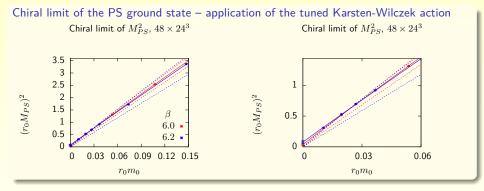
30-07 2013 11 / 16


1 The mass difference is not reduced to zero. Residual anisotropies persist.

Interpretendence on d disappears in the chiral limit.

30-07 2013 12 / 16

Chiral limit of the PS ground state – application of the tuned Karsten-Wilczek action Chiral limit of M^2_{PS} , 48×24^3


3 Sufficient tuning of parameters is assumed: $c_{6.0} = -0.450$, $c_{6.2} = -0.400$, d = -0.001

J.Weber, S.Capitani, H.Wittig (JGU Mainz) Numerical studies with Minimally Doubled Fermions

30-07 2013 13 / 16

イロト イヨト イヨト イヨ

JG

 Sufficient tuning of parameters is assumed: c_{6.0} = -0.450, c_{6.2} = -0.400, d = -0.001
 Light masses (M_{PS} ≤ 300MeV) might suffer finite volume effects (M_{PS}L ~ 1.8-2.4)
 Chiral extrapolation includes residual PS mass term A and quenched chiral logarithms: (r₀ M_{PS})² = r₀² A + (r₀ B₀)(r₀ m₀) ((1 − δ) − δ log(m₀/r₀)) (13)

<
ロ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □ ♪ < □

Chiral limit of the PS ground state – application of the tuned Karsten-Wilczek action Chiral limit of M_{PS}^2 , 48×24^3 Chiral limit of M_{PS}^2/m_0 , 48×24^3 35 3.5 30 3 25 2.5 $(r_0 M_{PS})^2$ 20 2 $(r_0 M_{PS})^2$ 15 1.5 в 10 6.0 1 6.0 5 0.5 6.2 × 6.2 n 0 0.03 0.06 0.09 0.12 0.15 0.03 0.06 0.09 0.12 0.15 0 $r_0 m_0$ $r_0 m_0$

 Sufficient tuning of parameters is assumed: c_{6.0} = -0.450, c_{6.2} = -0.400, d = -0.001
 Light masses (M_{PS} ≤ 300MeV) might suffer finite volume effects (M_{PS}L ~ 1.8-2.4)
 Chiral extrapolation includes residual PS mass term A and quenched chiral logarithms: (r₀ M_{PS})² = r₀² A + (r₀ B₀)(r₀ m₀) ((1 − δ) − δ log(m₀/r₀)) (13)

Possible evidence for quenched chiral logarithms – results still inconclusive

30-07 2013 13 / 16

Summary

- **9** First simulations with minimally doubled fermions in the quenched approximation
- **One of the second state and a second state and a second state and a state and a state and a state and sta**
- Sesults largely insensitive to parameter d
- O No statistically significant evidence for T-parity violation in PS ground state

β	CBPT	CNPT	d _{BPT}
6.0	-0.420	$-0.424(13)^{stat}$	-0.00179
6.2	-0.393	$-0.417(28)^{stat}$	-0.00167

< ロ > < 回 > < 回 > < 回 > < 回 >

Summary

- Irst simulations with minimally doubled fermions in the quenched approximation
- **One of the second state and a second state and a second state and a state and a state and a state and sta**
- Sesults largely insensitive to parameter d
- **One statistically significant** evidence for *T*-parity violation in PS ground state

β	CBPT	CNPT	d _{BPT}
6.0	-0.420	$-0.424(13)^{stat}$	-0.00179
6.2	-0.393	$-0.417(28)^{stat}$	-0.00167

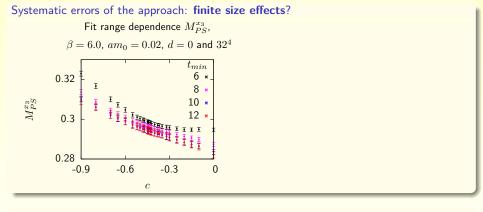
- Section of chiral behaviour of PS ground state no exceptional configurations
- Quenched chiral logarithms not unambiguously resolved

イロト 不得 トイヨト イヨト

Summary

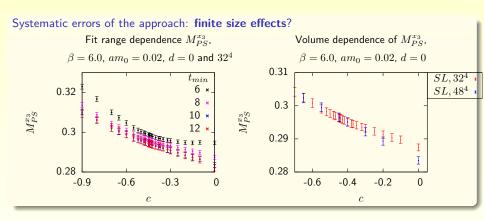
- Irst simulations with minimally doubled fermions in the quenched approximation
- **One of the second state and a second state and a second state and a state and a state and a state and sta**
- Results largely insensitive to parameter d
- On statistically significant evidence for T-parity violation in PS ground state

β	CBPT	CNPT	d _{BPT}
6.0	-0.420	$-0.424(13)^{stat}$	-0.00179
6.2	-0.393	$-0.417(28)^{stat}$	-0.00167

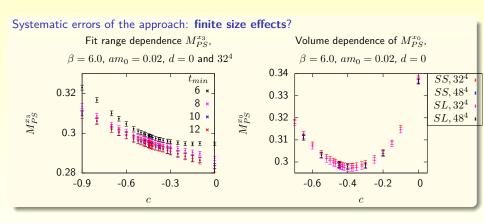

Section of chiral behaviour of PS ground state - no exceptional configurations

Quenched chiral logarithms not unambiguously resolved

Outlook

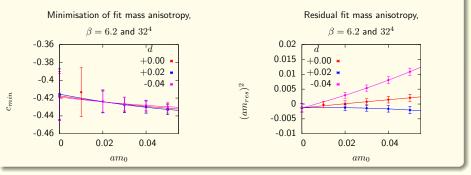

- Improve study of chiral behaviour larger volumes, different lattice spacings
- (a) Study of other observables (vector mesons, baryons) and improvement of tuning condition
- Study quark-disconnected contribution to PS correlator and lattice chiral perturbation theory in order to pin down charged and neutral pions
- Implement dynamical minimally doubled fermions

() $M_{PS}^{x_3}$ has strong sensitivity on fit range – indicates **finite size effects** ?



M^{x3}_{PS} has strong sensitivity on fit range – indicates finite size effects ?
 Pinite size effects less prominent in proximity of c_{min}

イロト イヨト イヨト イヨ


() $M_{PS}^{x_3}$ has strong sensitivity on fit range – indicates **finite size effects** ?

- Pinite size effects less prominent in proximity of c_{min}
- Volume dependence of M^{x0}_{PS} less than statistical errors

イロト イヨト イヨト イヨ

JG

Continuum limit – renormalisation on finer lattices

() Investigation of finer lattice with $\beta = 6.2$ – compatible with perturbative prediction.

- **(a)** Plateaus in $M_{PS}^{x_3}$ difficult to obtain source of systematic errors due to finite size effects.
- Solution Dependence of residual mass $(am_{res})^2$ on *d* disappears in the chiral limit.

< ロ > < 回 > < 回 > < 回 > < 回 >