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1. What kind of field theories can we simulate?

There is new enthusiasm to build gauge magnets/quantum-link
systems from laser-cooled atomic lattices. I’ll discuss U(1) mod-
els, two states per link, and SU(2) X U(1) models, four states per
link.

Taxonomy: Brontosaurus vs. Apatosaurus.

If these quantum systems can be realized, what do they really
simulate?

Ideally we’d have a Haldane argument relating the Hamiltonian
to a quantum field theory. The best scenario is that the latter is
(or is like) QCD.

Integer spin chain→ gapped O(3) sigma model, θ = 0,
Half-integer s.c. → ungapped O(3) sigma model, θ = π .
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In B. Reznik’s talk and the remainder of this parallel session,
you can hear much more about simulation strategies.

Abelian models have relativistic magnons→ compact QED. Sim-
ple SU(2) X U(1) model has non-relativistic magnons. Not Yang-
Mills theory, unless quantum fluctuations locally disrupt the
vacuum. This seems unlikely. :-( Spin-wave methods gener-
ally fail in the IR, but work in the UV. An important question is
how breaking parity on links changes this with γ5 (which makes
spin-wave analyses harder).

The rest of the talk is about...
2. Ancient history
3. Origins of gauge invariance
4. Confinement
5. Spin waves
6. Some open problems
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2. Here follows a history of ideas about gauge-invariant
magnetic systems, because I feel like Bjarne Herjulfson glimps-
ing Vinland’s coast, while remaining at sea.

David Horn first wrote down examples of Abelian and non-
Abelian models. He informed Daniel Rohrlich, after Daniel told
him (during lunch) about the paper we were writing. We also
learned Banks and Zaks had studied the phase diagram.

Rokhsar, Kivelson, Fradkin and others realized that quantum
dimer models of RVB wave functions have Abelian gauge sym-
metry. Quantum dimer models are Horn’s U(1)-symmetric model,
but with a matter field at sites.

Anderson discovered an SU(2) gauge invariance in the half-filled
Hubbard model/antiferromagnet (for which the excitations are
not gauge Bosons).
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In 1990, neither Daniel nor I noticed the U(1) gauge invari-
ance in the non-Abelian models. The gluon spin waves are non-
relativistic in the simplest model. Daniel discovered the exis-
tence of some strange spin waves which acted like those of the
Abelian model (but did not write it up).

We did find parity-violating non-Abelian models (without γ5

terms) with relativistic spin waves.

We wanted confined/screened spin → electronic superconduc-
tivity! Hopping spins produce this kind of gauge theory, just
as the half-filled Hubbard model produces AF Mott insulators
(more on this later).

Sorry if I bored you with this. Now some physics...
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3. Origins of gauge invariance
Schemes for making these systems are a significant part of this

subject:

L. Tagliacozzo, A. Celi, A. Zamora and M. Lewenstein, Ann. of
Phys. (2013) 330, pp. 160-191, arXiv:1205.0496 (U(1) gauge the-
ories).

L. Tagliacozzo, A. Celi, M. Lewenstein and me, arXiv:1211.2704
(SU(2) gauge theories).

These use mesoscopic Rydberg gates:
M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller,
Phys. Rev. Lett. 102, 170502 (2009).

H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler,
Nat. Phys. 6, 382 (2010).

On the next few pages is another approach.
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Consider the lattice of sites i, j, . . . . Particles, with quantum num-
bers (spin or color) Sa

j = c†
jS

ac j can sit or hop. Sites are in bags/femto-
universes (Bjorken), F,G, . . . .

H = −t ∑〈i, j〉 c
†
i c j +U ∑F VF , where the g. s. of VF is a singlet and

the first excited states are a multiplet.
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Hopping-parameter expansion

Theorem: The effective Hamiltonian obtained in perturbation the-
ory in t, is a gauge theory, where the Gauss law operator is

Ga
F = ∑

j∈F
Sa

j−PF

(
∑
j∈F

Sa
j

)
PF ∼ (~D ·~E)a−ρ

a,

where PF projects onto the multiplet of f. e. states of F . This op-
erator annihilates the lowest energy states of the effective theory.
The excited state is a color charge. Note: Gauss’ law is tautolog-
ical (it is true by definition). The effective Hamiltonian will have
terms of order tm/Um−1 on polygons (plaquettes) of with m sides.
A gauge-invariant matter coupling appears at order t2/U .
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Sometimes the effective theory is gauge-invariant by virtue of
having no dynamics. Alesio Celi, Luca Taglicozzo and I found an
example which had this unfortunate feature. So start from the right
place.

An old example of this idea is a model of links with two vacan-
cies, 8 sites around a plaquette, as done in :
SU(2) gauge invariance in Hubbard models and superconduc-
tivity, NBI-HE-90-29, June 1990, which can be found at the KEK
link:

http://ccdb5fs.kek.jp/cgi-bin/img/allpdf?200031897

reissued as arXiv:1207.0455, with a few typos fixed and some pre-
liminary remarks.

The figures are on the next page:
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3. Hamiltonians (not in full generality)

U(1) gauge theory: A 2×2 matrix-valued lattice link operator

U j(x)bc =
1
2
[σ x

j (x)τ
x
bc+σ

y
j (x)τ

y
bc] =∑

±
σ
±
j (x)τ

±
bc, or U j(x)=∑

±
σ
±
j (x)⊗τ

±

joins site x to site x+ ĵa, where j is the link direction, a is the lattice
spacing, and both σ x,y,z and τx,y,z are Pauli matrices.

H = ∑
x, j 6=k

Tr U j(x)Uk(x+ ĵa)U j(x+ k̂a)†Uk(x)†

= ∑
x, j 6=k

σ
±
j (x)σ

∓
k (x+ ĵa)σ±j (x+ k̂a)σ∓k (x).

The trace is on the τ’s. Gauss’ law operator or ice/6-vertex rule:

G(x) =
d

∑
j=1

[σ z
j(x)−σ

z
j(x− ĵa)], d = lattice dimension.
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SU(2)×U(1) gauge theory: 2×2 matrix of 4-d operators

Vj(x) =U j(x)+α j(x)U5
j (x), where α j(x) ∈ C

U j(x) = γ
0
j (x)⊗1l− i~γ j(x) ·⊗~τ, U5

j (x) = ρ
0
j (x)⊗1l− i~ρ j(x) ·⊗~τ,

and 4×4 operators on (x, j) are [γµ,γν]+ = 2δ µν , γ5 =−iγ0γ1γ2γ3,
ρµ = −iγ5γµ . Local spin operators: σ µν = − i

4[γ
µ,γν]− , Σb± =

1
4εbc f σ c f ±σ 0b. Hamiltonian and Gauss’ law ops, respectively:

H = J ∑
x, j 6=k

Tr Vj(x)Vk(x+ ĵa)Vj(x+ k̂a)†Vk(x)†±K ∑
x, j

γ
5
j (x),

Gb(x) =
d

∑
j=1

[Σb +
j (x)−Σ

b−
j (x− ĵa) ], SU(2),

G5(x) =
d

∑
j=1

[γ5
j (x)− γ

5
j (x− ĵa) ], U(1).
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A particular representation of the operators on links can be realized
by writing:

γ
0 = (T++T−)⊗1l , ~γ = i(T+−T−)⊗2~S,

where ~S is the spin of a particle which can fill one of two vacancies
on a link, and T± moves the particle between the two vacancies:

x ~ n x+ ĵa n ~
T+

@
�

T−
�
@

U(1) gauge inv. (ice rule):

~
~

n
n

~
n

~
n

~
n

n
~

n
~

~
n

n
~

n
~

n
n

~
~
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SU(2) Gauss law is the the statement that the spins of the par-
ticles neighboring a vertex are in a singlet state. We have an ice
rule again (with spin).

Allowing four or zero spins near a site weakens the ice rule to
allow for eight vertices, breaking the U(1) gauge invariance to a
Z2 gauge invariance.

Color sources are introduced by allowing the spin states to be
non-singlets. Electric U(1) sources are introduced by changing
the ice rule to allow different numbers of particles near a vertex.
But quarks and antiquarks have electric charge, as well as color.
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4. Confinement

A. First example. Keep ±K ∑x, j γ
5
j (x), K � J. Favors one of the

vertices:

±=− ±=+~
n

n
~

n
~

~
n

It is naive to interpret this as an E-squared term.
This breaks (link) parity. If K� J, vacuum is frozen, a large gap

of order K. A qq̄-pair produces a line of defects:

n
~

~
n

n ~
~

n
n

~
~

n
n

~
~

n
n

~
~

~
n
~ n

~
~

n
Defect string (here of length 3a), with string tension K/a.
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B. Second example. Set K = 0 and α j(x) = 0:

H = J ∑
x, j 6=k

Tr U j(x)Uk(x+ ĵa)U j(x+ k̂a)†Uk(x)†.

Also confines! Quark or antiquark on a vertex modifies configs. to:

q −→ n
n

~~
n

n
~

n~
n

n
n

n
n~
~ n

n
~

n
~

q̄ −→ ~
~

n~
~

~
n

~~
~

n
~

~
n~
~ ~

~
~

n
~

Except for spins, same as U(1). A qq̄-pair produces a string or
cuts a piece of string in a background of transversely oscillating
hard strings (me, early 1990’s, but with wrong wave functions).
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Confinement in both ranges of parameters is simi-
lar to the U(1) gauge theory with a term proportional
to σ

z
j(x). All I really showed you was electric charge

confinement. Maybe someone in the audience has
thought about this more.

Color is confined, however, as in the confinement
phase of the Georgi-Glashow model.

Conclusion: The Banks-Zaks transition in K/J (if it
exists) is not a deconfining transition.
T. Banks and A. Zaks, Nucl. Phys. B196 (1982) 189.
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5. Spin waves (all done in the 1990 paper with Rohrlich).
A. K = 0,α j(x) = 0. 2nd example already discussed (confines).

Generalize s = 1/2 to large s. Action formulation: γµ → nµ , ρµ →
mµ , with n2 = m2 = 1, m · n = 0, Σb± → N b± = n0mb−m0nb±
εabcnbmc. Gauge field is U j(x) = n0⊗1l− i~n ·⊗~τ .

S=∑
x, j

s
∫

dt
∫

∞

0
du εαβ µν nα

j mβ

j

(
∂nµ

j

∂ t
∂nν

j

∂u
+

∂mµ

j

∂ t
∂mν

j

∂u

)
(a WZNW term)

−J ∑
x, j 6=k

Tr U j(x, t)Uk(x+ ĵa, t)U j(x+ k̂a, t)†Uk(x, t)†

−∑
x

Ab
0(x, t)

d

∑
j=1

[Nb +
j (x, t)−Nb−

j (x− ĵa, t) ].

Non-relativistic spin waves: |E|= 4Jp2. SSB of time-reversal
symmetry, like ferromagnets. Kinetic term is first-order in ∂/∂ t.
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Embarrassing that ∑x,i Kγ5(x, i) can’t be implemented
in the semiclassical SO(4) formalism. Related to the
fact that both ~N± are unit vectors. An SU(4) formal-
ism can deal with γ5, but then γµ can’t be thought of
as a unit vector.
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B. A model with relativistic spin waves. In d=2+1

H = J1 ∑
x1+x2 even

Tr UUUU + J2 ∑
x1+x2 odd

Tr U5U5U5U5,

There is an (obvious) version in d=3+1 too.

This has spin waves similar to those of the 1-dim. chain (Aharonov-
Casher-Susskind):

HACS = J1 ∑
x even

γ(x) · γ(x+1)+ J2 ∑
x odd

ρ(x) ·ρ(x+1).

This describes relativistic Fermions, with speed of light and mass
gap,

c = 8
√
|J1J2|, m =

|J1− J2|
8|J1J2|

, respectively.
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6. Problems I am trying to solve (in no particular or-
der):
A. Find a better approach to spin waves. Find a Holstein-Primakoff
rep. (write the operators in terms of harmonic-oscillator a’s and
a†’s).

B. HALDANE! The non-Abelian model with relativistic spin waves
can be rewritten as 1 + 1-dim left- and right-handed gauged
SU1(2) WZNW models coupled together. I think this can be
used to find an effective continuum action. Suspicion: Chern-
Simons in d=2+1, θ = π in d=3+1.

C. There should be Rokhsar-Kivelson points, where non-Abelian
models are critical. This would give some insight into the effec-
tive QFT’s, which is ESSENTIAL.

D. Confinement in SU(N) theories without U(1) invariance.
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E. Make the entire standard model SU(3) X SU(2) X U(1) from
hopping particles. Probably isn’t how nature does it. Different
excitations will have different relations between momentum and
energy, e.g., different speeds of light. But fun!

I once read something interesting about professional tennis:
You must be smart enough to play it, but just dumb enough to
believe it matters.

In the context of a reductionist theory of nature, the corre-
sponding aphorism is:
You must be smart enough to investigate it, but not dumb enough
to believe it.

THANK YOU!
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