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Introduction
• QCD Critical Point in the temperature (T )-baryon density (µB) plane is a

major focal theme of many experiments, such as the beam energy scan at RHIC
or the upcoming FAIR (Germany) and NICA (Russia).

• Many models suggest its existence (e.g.,Asakawa-Yazaki, NPA 1989) but the best and most
reliable way to locate it, if it exists, maybe Lattice.
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— 2 light and 1 moderately heavy flavour with good control on UA(1)-
anomaly.

— method(s) to handle the complex Fermion Determinant for nonzero µB.
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Introduction
• QCD Critical Point in the temperature (T )-baryon density (µB) plane is a

major focal theme of many experiments, such as the beam energy scan at RHIC
or the upcoming FAIR (Germany) and NICA (Russia).

• Many models suggest its existence (e.g.,Asakawa-Yazaki, NPA 1989) but the best and most
reliable way to locate it, if it exists, maybe Lattice.

• Beset with strong challenges : Its investigation needs

— 2 light and 1 moderately heavy flavour with good control on UA(1)-
anomaly.

— method(s) to handle the complex Fermion Determinant for nonzero µB.

• Mostly staggered quarks used in the present-day simulations. Broken flavour
and spin symmetry on lattice: 2 + 1 flavours ? Anomaly ??
— Overlap/DWF possible now (Gavai-Sharma, PLB 2012).
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Lattice Approaches for µ 6= 0

Several approaches proposed in the past two decades or more : None as
satisfactory as the usual T 6= 0 simulations.
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Several approaches proposed in the past two decades or more : None as
satisfactory as the usual T 6= 0 simulations.

• A partial list :

– Two parameter Re-weighting (Z. Fodor & S. Katz, JHEP 0203 (2002) 014 ).
– Imaginary Chemical Potential (Ph. de Frocrand & O. Philipsen, NP B642 (2002) 290; M.-P. Lombardo & M.

D’Elia PR D67 (2003) 014505 ).
– Taylor Expansion (C. Allton et al., PR D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003) 034506 ).
– Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006)

167.)
– Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work ).
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D’Elia PR D67 (2003) 014505 ).
– Taylor Expansion (C. Allton et al., PR D68 (2003) 014507; R.V. Gavai and S. Gupta, PR D68 (2003) 034506 ).
– Canonical Ensemble (K. -F. Liu, IJMP B16 (2002) 2017, S. Kratochvila and P. de Forcrand, Pos LAT2005 (2006)

167.)
– Complex Langevin (G. Aarts and I. O. Stamatescu, arXiv:0809.5227 and its references for earlier work ).

• Why Taylor series expansion? — i) Ease of taking continuum and
thermodynamic limit & ii) Better control of systematic errors.
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Detail of Expansion

Standard definitions yield various number densities and susceptibilities :

ni = T
V
∂ lnZ
∂µi

and χij = T
V
∂2 lnZ
∂µi∂µj

.

These are also useful by themselves both theoretically and for Heavy Ion Physics
(Flavour correlations, λs . . .) (S. Datta’s talk)

Denoting higher order susceptibilities by χnu,nd, the pressure P has the expansion
in µ:

∆P

T 4
≡ P (µ, T )

T 4
− P (0, T )

T 4
=
∑
nu,nd

χnu,nd
1

nu!

(µu
T

)nu 1

nd!

(µd
T

)nd
(1)
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• From this expansion, a series for baryonic susceptibility can be constructed. Its
radius of convergence gives the nearest critical point.

• Successive estimates for the radius of convergence obtained from the

coefficients of the series using

√
n(n+1)χ

(n+1)
B

χ
(n+3)
B

T 2
or

(
n!

χ
(2)
B

χ
(n+2)
B

T 2

)1/n

. We use both

definitions and terms up to 8th order in µ.

• All coefficients of the series must be POSITIVE for the critical point to be at
real µ, and thus physical.

• We (Gavai-Gupta ’05, ’09) use up to 8th order. Bielefeld-RBC so far has up to 4th-6th

order.

• 10th & even 12th order may be possible : Ideas to extend to higher orders are
emerging (Gavai-Sharma PRD 2012 & PRD 2010) which save up to 60 % computer time.
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Our Simulations & Results

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm used.

• mπ/mρ = 0.31± 0.01 ; Kept the same as a→ 0 (on all Nt).

• Earlier Lattice : 4 ×N3
s , Ns = 8, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)

Finer Lattice : 6 ×N3
s , Ns = 12, 18, 24 (Gavai-Gupta, PRD 2009).
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• TE

Tc
= 0.94± 0.01, and

µEB
TE

= 1.8± 0.1 for finer lattice: Our earlier coarser

lattice result was µEB/T
E = 1.3± 0.3. Infinite volume result: ↓ to 1.1(1)
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Our Simulations & Results

• Staggered fermions with Nf = 2 of m/Tc = 0.1; R-algorithm used.

• mπ/mρ = 0.31± 0.01 ; Kept the same as a→ 0 (on all Nt).

• Earlier Lattice : 4 ×N3
s , Ns = 8, 10, 12, 16, 24 (Gavai-Gupta, PRD 2005)

Finer Lattice : 6 ×N3
s , Ns = 12, 18, 24 (Gavai-Gupta, PRD 2009).

• TE

Tc
= 0.94± 0.01, and

µEB
TE

= 1.8± 0.1 for finer lattice: Our earlier coarser

lattice result was µEB/T
E = 1.3± 0.3. Infinite volume result: ↓ to 1.1(1)

• Tc — defined by the peak of Polyakov loop susceptibility.

• Even finer Lattice : 8 ×323 — This Talk
Aspect ratio, Ns/Nt, maintained four to reduce finite volume effects.
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Critical Point : Story thus far
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♠ Nf = 2 (magenta) and 2+1 (blue) (Fodor-Katz, JHEP ’04).

♥ Nt = 4 Circles (GG ’05 & Fodor-Katz JHEP ’02), Nt = 6 Box (GG ’09).
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Computing The Susceptibilities

All susceptibilities can be written as traces of products of M−1 and various
derivatives of M .

At leading order,

χ20 =

(
T

V

)
[〈O2 +O11〉], χ11 =

(
T

V

)
[〈O11〉]

Here O2 = Tr M−1M ′′−Tr M−1M ′M−1M ′, and O11 = (Tr M−1M ′)2, and the
traces are estimated by a stochastic method (Gottlieb et al., PRL ’87):

Tr A =
∑Nv
i=1R

†
iARi/2Nv , and (Tr A)2 = 2

∑L
i>j=1(Tr A)i(Tr A)j/L(L− 1),

where Ri is a complex vector from a set of Nv subdivided in L independent sets.
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χ2 for Nt = 8, 6, and 4 lattices
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♠ Our Nt = 8 (Lattice 2013) and Nt = 6 (GG, PRD ’09) results agree.

♥ Our estimate of βc(Nt = 8) agrees with Gottlieb et al. PR D47,1993.
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4th Order Susceptibilities for Nt = 8 lattice
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♠ ∼200 configurations separated by a a few autocorrelation lengths employed.
♠ 2000 Gaussian random vectors employed at each point.
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Radius of Convergence result
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♥ As earlier for smaller Nt, constancy of the ratios  (TE, µE) for Nt = 8 to be
(0.94 ± 0.01, 1.68 ± 0.05).
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Radius of Convergence result
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♠ Same TE as for Nt = 6, with the corresponding band for µE (1.8± 0.1)
displaying consistency as well.
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Summary

• The method we advocated, and
employed for Nt = 4 and 6, works
for Nt = 8 as well, yielding similar
qualitative picture.

• Our results (TE, µE) for Nt = 8 are
the first to approach the continuum
limit.

Lattice 2013, Mainz, Germany, July 31, 2013 R. V. Gavai Top 13



Summary

• The method we advocated, and
employed for Nt = 4 and 6, works
for Nt = 8 as well, yielding similar
qualitative picture.

• Our results (TE, µE) for Nt = 8 are
the first to approach the continuum
limit. 0.7

0.8

0.9

1

1.1

0 1 2 3 4 5

T
/T

c

/TBµ

Critical point estimates:

Freezeout curve
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Budapest-Wuppertal Nt=4

ILGTI-Mumbai  Nt=4
ILGTI-Mumbai  Nt=6
ILGTI-Mumbai  Nt=8

Critical Point location appears to be the same for Nt = 8 and 6 at temperature
TE

Tc
= 0.94± 0.01. Slight shift in µEB/T = 1.68(5) for Nt = 8 ; Agrees with

Nt = 6 within errors.
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