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Introduction

 Complex Langevin dynamics provides a way to simulate theories with 
complex actions               no importance sampling, no sign problem!

 It opens the way to QCD simulations at                          

 The method was introduced in 1983 by G.Parisi and J.R.Klauder but shortly 
after it was clear that correct results are not garanteed

 We do not have a FULL UNDERSTANDING of the problem yet!

 A combination of analytical and numerical results, also on simple models, 
can help us!

 Recently the importance of the properties of the probability distribution 
(generated by the Langevin process) in the complexified configuration space 
has been clarified: the distribution has to drop very rapidly (in particular in 
the imaginary direction)              this can be  formalised in a criterion for 
correctness [G. Aarts, F. A. James, E. Seiler and I. -O. Stamatescu, Eur. Phys. J. C 
71 (2011) 1756]

¹B 6= 0
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The goal of this work

 Here we study the probability distribution (by brute force and solving the 
Fokker-Planck Equation, FPE) and then we relate the results to the criterion 
for correctness

 We have a complete characterisation of the dynamics by studying:

 Classical flow

 Criterion for correctness

 Explicit solution of the FPE

 

 We show moreover that:

 If the distribution has support only on a strip of the complexified 
configuration space, then correct results are obtained !
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The model + CL

 The toy model: 

 Analytic solution: 

 Complex Langevin (CL) equation:

 Complexification: 

 CL is now:

 Drift:

 Noise:

Z =

r
4»

¾
e»K¡ 1

4
(») » = ¾2=(8¸) ) hxni

_z = ¡@zS(z) + ´
z = x+ iy; ´ = ´R + i´I ; ¾ = A+ iB

_x = Kx(x; y) + ´R; _y = Ky(x; y) + ´I

Kx ´ ¡Re@zS(z) = ¡Ax+By ¡ ¸x
¡
x2 ¡ 3y2

¢

Ky ´ ¡Im@zS(z) = ¡Ay ¡Bx¡ ¸y
¡
3x2 ¡ y2

¢

h´R(t)´R(t0)i = 2NR±(t¡ t0); h´I(t)´I (t0)i = 2NI±(t¡ t0); NR ¡NI = 1

Z =

Z 1

¡1
dx e¡S; S =

1

2
¾x2 +

1

4
¸x4; ¾ 2 C; ¸ 2 R



5

Criterion for correctness

 Averaging over the noise we can determine the expectation values

 The probability distribution                describes how the configuration space 
is sampled; its evolution in time is given by the Fokker-Planck Equation:

 The expectation value is given by: 

 But we know that:

 Therefore we want that:

 Introducing the Langevin Operator:                                     ,                          
the criterion for correctness is given by:                                                             
                                                                                                                          
(to be satisfied for a complete set of observables)

P (x; y; t)

_P (x; y; t) = LTP (x; y; t); LT = @x (NR@x ¡Kx) + @y (NI@y ¡Ky)

hOi´

hOiP (t) =
Z
dxdy P (x; y; t)O(x + iy)

hOi½(t) =
Z
dx ½(x; t)O(x); ½(x) = e¡S(x)

hOi½(t) = hOiP (t)

~L = [@z ¡ (@zS(z))] @z

CO ´ h~LO(z)i = 0
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Real noise

 We consider the observables:                      and the criterion:

Perfect agreement and criterion for correctness satisfied!
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Complex noise

 Note:      always consistent with zero; strong fluctuation for large NIC2
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Solving FPE

 We want to solve the FP equation:

 To do that we solve the eigenvalue problem: 

 If we have a unique ground state      with eigenvaue           , then the solution 
is:

 In [A.Duncan, M.Niedermaier, Annals Phys.329 (2013) 93] P(x,y) is 
expanded in a basis of Hermite functions: 

 This was done introducing creation and annihilation operators,              :

  We determine the matrix elements:                     where                                    
   and therefore                                           

 Note: 
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Complex noise (eigenvalues & 3d distr.)

 The eigenvalues around the origin are independent of 

 Ground state:

 We find that there is an interval for      for which:

 There is always an eigenvalue consistent with zero

 The other eigenvalues are in the right half-plane

 The ground state is stable under variation of ! and NH

! = 1:5 and NH = 150

!

!
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Complex noise (integrat. distr. & power decay)

 Partially integrated distr:

 Manifestation of the truncation in 
 

 We observe a power decay with power 5:                                                      

 This suggests: 

Px(x) =
R1
¡1 dy P (x; y); Py(y) =

R1
¡1 dxP (x; y)

P (x; y) » 1
(x2+y2)3

Px(x) » 1
jxj5 ; Py(y) » 1

jyj5

NH
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Real noise (eigenvalues & distr.)

 There is an eigenvalue at the origin but in general they depend on 

 From           we see convergence only for large values of       

 Distribution very localised, drops to zero around 

!

Py(y) !

y ¼ 0:28
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Real noise (truncation & 3d plot)

          exponential decay!



Px(x)

Px(x) » e¡ax
4

; a » 0:295:
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Classical flow



 3 fixed points (where                                        ):

 An attractive point at (x,y)=(0,0)

 Two repulsive points at   

 Blue lines where                 changes sign

 Dynamics confined between the dashed 
lines!!!  (we have:                                    )

(Kx(x; y); Ky(x; y)) for ¾ = 1+ i and ¸ = 1

Ky(x; y)

Kx(x; y) = Ky(x; y) = 0

(§0:455;¨1:10)

¡0:3029 < y < 0:3029
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Conservation law

 The classical flow result can be made more rigorous

 We note that the FPE takes the form of a conservation law:

                                                           

 We can now introduce the charge

 Assuming sufficient decay, i.e.                                      and real noise we 
have: 

 Since               is not negative, if                 has a definite sign as a function of 
x for a given y, then             has to vanish for this y value

_P (x; y; t) = @xJx(x; y; t) + @yJy(x; y; t)

Kx;y(x; y)P (x; y)! 0

Q(y; t) =
R1
¡1 dxJy(x; y; t)

Jx = (NR@x ¡Kx)P; Jy = (NI@y ¡Ky)P

Q(y) =
R1
¡1 dxKy(x; y)P (x; y) = 0

P (x; y) Ky(x; y)
P (x; y)

 The distribution is strictly zero in the two 
strips provided that

 Where: 

3A2 > B2 and NI = 0

y2§ =
A
2¸

µ
1§

q
1¡ B2

3A2

¶
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Absence of strips

 For complex noise there are 
no strips!

 Always power decay: 

 For real noise no strip if 

 Increasing B similar to 
increasing 

Py(y) » 1=jyj5

NI

3A2 < B2



16

Criterion for correctness vs B

 Also from here we see that the effect of increasing B is very similar 
to increasing the value of  NI
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Universal decay behaviour

 It is possible to understand the universal power decay!

 Starting from FPE:

 And substituting the Ansatz:

 We find that:

 At large x and y, only the last term dominates and we have: 

 And therefore: 

   

_P (x; y; t) = LTP (x; y; t)

P (x; y) =
c

(x2 + y2)®

®
x2 ¡ y2 + 2®(NRx2 +NIy2)

(x2 + y2)2
+A(1 ¡ ®) + ¸(3¡ ®)(x2 ¡ y2) = 0

® = 3

Px(x) »
1

jxj5 ; Py(y) »
1

jyj5
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Conclusions
 In order to justify the results obtained with CL the probability distribution has 

to be sufficiently localised

 Here we have studied the properties of the distribution via a number of 
methods: classical flow, histogram by brute force, explicit solution of FPE, 
criterion for correctness

 We have found:

 For real noise  as                  , the distribution has support only in a strip 
and it has an exponential decay in the real direction; criterion for 
correctness satisfied and correct results obtained!

 When                 or the noise is complex the distribution is NOT localised; 
 the distribution has a power law:                                     , because of this 
slow decay  high moments are not well-defined; criterion for correctness 
suffer of large fluctuations: signal of failure!  

 A consistent picture of the dynamics can be obtained already from a 
combination of partially integrated distribution and criterion for correctness

 These tools are readily available to study SU(N) gauge theories (plus gauge 
cooling...)

3A2 > B2

P (x; y) » (x2 + y2)¡3
3A2 < B2
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