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Reminder of the notation

The baryon number susceptibility:
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Series expansion of the susceptibility:
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Expansion in powers of z = µB/T . Coefficients depend on T but
not on µB .

Results obtained with Nf = 2 staggered quarks with
mπ/mρ ≃ 0.26. Lattice sizes are 8× 323. 50K+ configurations at
each β, 2000 fermion sources for measurements.
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The number of fermion sources
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Multi-loop (multi-trace) operators dominate errors. Higher orders
very hungry for sources.
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The number of configurations
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The number of configurations: 250N; errors are the usual 1/
√
N.

Ratios are fat-tailed; errors by bootstrap.
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Susceptibility for µ 6= 0

Resum a series into a Padé approximant. For example,

[0, 1] : S(z) =
c

z∗ − z

[1, 1] : S(z) =
a+ bz

z∗ − z

Width of the critical region? If we define it by
∣

∣

∣

∣
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∣

∣
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> Λ,

then for [0, 1] Padé: |z − z∗| ≤ z∗/Λ.
Errors in extrapolation? Simple case of [0, 1] Padé, we have
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,

where δ is fractional error in z∗. General case similar.
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A divergence

Want to evaluate the [0, 1] Padé approximant

P(z ; z∗) =
1

z∗ − z
,

at various z = µB/T for z∗ determined from lattice measurement.
Distribution of z∗; so for any z , there is a probability that z = z∗.
〈P〉 and σ(P) both diverge.
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A divergence

Want to evaluate the [0, 1] Padé approximant

P(z ; z∗) =
1

z∗ − z
,

at various z = µB/T for z∗ determined from lattice measurement.
Distribution of z∗; so for any z , there is a probability that z = z∗.
〈P〉 and σ(P) both diverge.
See this another way. Assume that the distribution of z∗ is
Gaussian with mean 1 and variance σ2. Then the distribution of P
at fixed z is given by

p(P ; z) =
1√
2πσ2

1

P2
e
−(z−1−1/P)2/(2σ2).

The distribution is normalizable but none of the moments exist.
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Bootstrap is a regularization

Due to finite statistics (N), the maximum and minimum values of
the Padé approximant are bounded: |P | ≤ Λ(N).

If one estimates P(z ; z∗) by a bootstrap, then one should take the
number of bootstrap samples to be O(N). By accounting for the
restricted range |P | ≤ Λ, all the integrals are regularized. If the
measurements are made with statistics of N, then σ2 ∝ 1/N. In
generic samples

ǫ(Λ) = 1−
∫ Λ

−Λ
dPp(P ; z),

where Λ is such that Nǫ(Λ) ≪ 1.

Now, σ2 ∝ 1/N. In the limit N → ∞ can one have finite 〈P〉 and
〈P2〉?
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Finite results: renormalization!

The condition Nǫ≪ 1 is satisfied if the growth of Λ is bounded by
Λ ∝ N3/2. Extreme value statistics: this happens. So cutoff can
removed as N → ∞. Then for Gaussian distributed z∗,

δ〈P〉 ≃ e
−K(1−z)2N log(N)

δ〈P2〉 ≃ e
−K(1−z)2NNσ

As a result a bootstrap estimation will lead to good estimates of
mean and error except for |z − 1| < O(1/

√
N).
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Finite results: renormalization!

The condition Nǫ≪ 1 is satisfied if the growth of Λ is bounded by
Λ ∝ N3/2. Extreme value statistics: this happens. So cutoff can
removed as N → ∞. Then for Gaussian distributed z∗,

δ〈P〉 ≃ e
−K(1−z)2N log(N)

δ〈P2〉 ≃ e
−K(1−z)2NNσ

As a result a bootstrap estimation will lead to good estimates of
mean and error except for |z − 1| < O(1/

√
N).

Same strategy beyond the Gaussian approximation: bound the
growth of 〈P〉 and 〈P2〉 by verifying that the estimate of the error
in the pole narrows faster than the growth of the probability in the
tail of the distribution of the value of P(z ; a). Works when z∗ is
the ratio of two Gaussian distributed variates (each with variance
going as 1/N).
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The theory works
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If χB ≃ (z2
∗
− z2)−ψ then χ′

B
/χB has a simple pole.
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Many faces of m1

Define:

m1(z) =
d logχB

dz
=
χ′

B
(z)

χB(z)
.

Can be continued to finite chemical potential, and hence can be
compared to measurements. SG: arXiv:0909.4630 (CPOD)

1 Constructed the Padé approximants and noted that
comparison to experiment can be used in two ways. Gavai, SG:

arXiv:1001.3796

If freezeout point is assumed to be known, then can be used to
set a temperature scale from experiment. SG etal: Science 332

(2011) 1525

If temperature scale is measured on lattice, then can be used
to extract freezeout point from experiment. Bazavov etal:

arXiv:1208.1220; Borsanyi etal: 1305.5161

2 Padé resummation gives ODE which can be integrated to
continue measurements to finite µ.
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The DLOG Pade

At a critical point χB ≃ (z2
∗
− z2)−ψ. Since

χB =
∂2(P/T 4)

∂z2
,

the continuity and finiteness of P at the CEP forces ψ ≤ 1.

Branch cut: hard to do a simple Padé analysis. Well-known
technique, convert to a problem with a pole:

m1(z) =
d logχB

dz
≃ 2ψz

z2
∗
− z2

.

Use the series to estimate the critical exponent.

Accurate results require fine statistical control of at least 3 series
coefficients of χB . Preliminary results now.
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Critical exponent
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Large errors in ψ, but ψ < 1 as expected from continuity of
pressure. 3d Ising: ψ ≥ 0.79; mean field theory: ψ ≥ 0.66.
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Statistical uncertainty in pressure
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Integrate to get pressure: more in Datta’s talk (Session 8A)
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Critical point and critical region

1 Study of the errors in χn

B
and various operators which go into

it began a decade ago, and is now mature. Errors can be
controlled, and radii of convergence can be estimated with
confidence. (Gavai, Lattice 2013).

2 Study of errors in Padé approximants is more recent: now
understood completely. Indicates one of the ways in which
critical slowing down may be manifested.

3 The detailed study of Padé approximants has now begun.
First results on the critical exponent given here: consistent
with 3d Ising, but cannot distinguish between models. More
on susceptibilities and pressure in another talk. (Datta,
Lattice 2013).

4 Noise reduction techniques? Important open question.
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