# Magnetization and pressures at nonzero magnetic fields in QCD

Gergely Endrődi

#### University of Regensburg

[arXiv:1303.1328]

#### in collaboration with G. Bali, F. Bruckmann, F. Gruber, A. Schäfer



Universität Regensburg





Lattice 2013, 31. July 2013

- examples for systems with strongly interacting matter and magnetic fields:
  - dense neutron stars, magnetars
  - non-central heavy ion collisions
  - early universe cosmology



- examples for systems with strongly interacting matter and magnetic fields:
  - dense neutron stars, magnetars
  - non-central heavy ion collisions
  - early universe cosmology



- examples for systems with strongly interacting matter and magnetic fields:
  - dense neutron stars, magnetars
  - non-central heavy ion collisions
  - early universe cosmology
- QCD vacuum: charged quarks and neutral gluons  $\Rightarrow$  external *B*-field acts as probe of QCD vacuum:
  - affects chiral symmetry breaking [Gusynin et al '96]
  - changes the hadron spectrum
  - phase diagram structure [Bruckmann's talk, Kovács's talk]
  - broken Lorentz symmetry  $\rightarrow$  new order parameter(s) [Smilga et al '84]
  - para- or diamagnetism [Bali, Bruckmann, GE et al '12, '13]
  - equation of state

- examples for systems with strongly interacting matter and magnetic fields:
  - dense neutron stars, magnetars
  - non-central heavy ion collisions
  - early universe cosmology
- QCD vacuum: charged quarks and neutral gluons  $\Rightarrow$  external *B*-field acts as probe of QCD vacuum:
  - affects chiral symmetry breaking [Gusynin et al '96]
  - changes the hadron spectrum
  - phase diagram structure [Bruckmann's talk, Kovács's talk]
  - broken Lorentz symmetry  $\rightarrow$  new order parameter(s) [Smilga et al '84]
  - para- or diamagnetism [Bali, Bruckmann, GE et al '12, '13]
  - equation of state: preliminary lattice results

## Two comments in advance

- renormalization in magnetic fields
- definition of pressure in magnetic fields

## **Renormalization in magnetic fields**

• thermodynamic potential schematically (1-loop):



 $\log \mathcal{Z}_B = \log \mathcal{Z}_0 + \beta_1 (eB)^2 \log a + c(eB)^4 \cdot \text{finite} + \dots$  $\beta_1 (eB)^2 \log a + \frac{B^2}{2} = \frac{B_r^2}{2}$ 

- coefficient of  $\mathcal{O}(B)^2$  contribution equals the leading coeff of QED  $\beta$ -function [Schwinger '51]  $\rightarrow$  background field method [Abbott '81]
- renormalization at  $T = 0 \Leftrightarrow \text{subtract } \mathcal{O}((eB)^2)$ term from the free energy

#### Definition of pressure in magnetic fields

• free energy  $\mathcal{F} = -T \log \mathcal{Z}$ 

• consider a finite volume  $V = L_x L_y L_z$ , traversed by a magnetic flux  $\Phi = eBL_x L_y$ 



#### Definition of pressure in magnetic fields

• free energy  $\mathcal{F} = -T \log \mathcal{Z}$ 

• consider a finite volume  $V = L_x L_y L_z$ , traversed by a magnetic flux  $\Phi = eBL_x L_y$ 





#### Definition of pressure in magnetic fields

• free energy 
$$\mathcal{F} = -T \log \mathcal{Z}$$

• consider a finite volume  $V = L_x L_y L_z$ , traversed by a magnetic flux  $\Phi = eBL_x L_y$ 

$$p_i = -\frac{1}{V} L_i \frac{\mathrm{d}\mathcal{F}}{\mathrm{d}L_i}, \qquad \qquad M = -\frac{1}{V} \frac{1}{e} \frac{\partial\mathcal{F}}{\partial B}$$

• extensivity of  $\mathcal{F}$  in a large homogeneous system

$$\mathcal{F}(L_i, B) = L_x L_y L_z \cdot f(B)$$
  
$$\mathcal{F}(L_i, \Phi) = L_x L_y L_z \cdot f(\Phi/L_x L_y)$$

• compression with B or  $\Phi$  constant?

$$p_i^{(B)} = -\frac{1}{V} \frac{\partial \mathcal{F}}{\partial \log L_i}, \qquad p_i^{(\Phi)} = -\frac{1}{V} \frac{\partial \mathcal{F}}{\partial \log L_i} - \frac{1}{V} \frac{\partial \mathcal{F}}{\partial B} \cdot \frac{\partial B}{\partial \log L_i} \bigg|_{\Phi},$$

define B- and Φ-schemes

 $p_{x,y}^{(B)} = p_z^{(B)}, \qquad p_{x,y}^{(\Phi)} = p_z^{(\Phi)} - M \cdot eB$ 

## Magnetization on the lattice

- let's calculate  $M \sim \partial \log \mathcal{Z} / \partial B$
- quantization of magnetic flux in a finite volume with periodic boundary conditions ['t Hooft '79]

$$\Phi = eB \cdot L_x L_y = 2\pi N_b, \qquad N_b \in \mathbb{Z}$$

 $\Rightarrow$  B-derivative ill-defined! [DeTar's talk]

- $\Rightarrow$  naturally corresponds to the  $\Phi$ -scheme
- instead, determine magnetization from

$$p_x - p_z = -M \cdot eB$$

 $\rightarrow$  consider anisotropic lattice  $\xi=a/a_{\alpha}$  [Karsch '82]

$$p_{\alpha} = -\xi^2 \frac{T}{V} \frac{\mathrm{d}\log\mathcal{Z}}{\mathrm{d}\xi} \bigg|_a,$$

•  $p_{\alpha}$  contains certain components of the action  $\rightarrow M \cdot eB$  contains *anisotropies* of the action

## **Magnetization from anisotropies**

• dominant contribution comes from fermions:

$$M \cdot eB \approx \sum_{f} A(\mathcal{C}_{f})$$

• with the fermionic action

$$S = \sum_{f} \bar{\psi}_{f} (\not D + m_{f}) \psi_{f},$$

separating into components

$$\mathcal{C}_{\mu,f} = \bar{\psi}_f \mathcal{D}_{(\mu)} \psi_f$$

building up the anisotropy

$$A(\mathcal{C}_f) = \frac{\left\langle \mathcal{C}_{x,f} \right\rangle + \left\langle \mathcal{C}_{y,f} \right\rangle}{2} - \left\langle \mathcal{C}_{z,f} \right\rangle$$

• see details in [Bali, Bruckmann, GE et al '13]

## **Magnetization from anisotropies**

• charge renormalization for the magnetization

$$M^r \cdot eB = M \cdot eB - (eB)^2 \cdot \lim_{eB \to 0} \frac{M \cdot eB}{(eB)^2}.$$



- QCD vacuum is a paramagnet!
  cf. [Bonati's talk, DeTar's talk]
- comparison with HRG [GE '13]

#### Another approach to the EoS

• generalized integral method in  $\{\beta, m_f, N_b\}$  space: use that B has no effect in pure gauge theory!



$$\log \mathcal{Z}_2 - \log \mathcal{Z}_1 = \int_1^2 \left( \partial_\beta \log \mathcal{Z} \ \partial_{m_f} \log \mathcal{Z} \right) \begin{pmatrix} \mathrm{d}\beta \\ \mathrm{d}m_f \end{pmatrix}$$

## Another approach to the EoS

• generalized integral method in  $\{\beta, m_f, N_b\}$  space: use that B has no effect in pure gauge theory!



• result: pressure along fixed flux, i.e. fixed  $eB/T^2$ one more interpolation to get  $p_z(B,T)$ 

#### **Comparison of the two methods**

• two completely different ways to get  $p_z(T,B)$ 



# Summary

- renormalization:  $\mathcal{O}(B^2)$  subtraction at T = 0
- distinct pressure definitions: B-scheme (isotropy) vs.
   Φ-scheme (anisotropy)
- *B*-dependence of QCD pressure determined
  - magnetization from lattice anisotropies [arXiv:1303.1328]

 pressure through generalized integral method [preliminary]







#### The condensate has it all



#### The condensate has it all

