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QCD and magnetic �elds

• examples for systems with strongly interacting
matter and magnetic �elds:

- dense neutron stars, magnetars

- non-central heavy ion collisions

- early universe cosmology
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• QCD vacuum: charged quarks and neutral gluons

⇒ external B-�eld acts as probe of QCD vacuum:

- a�ects chiral symmetry breaking [Gusynin et al '96]

- changes the hadron spectrum

- phase diagram structure [Bruckmann's talk, Kovács's talk]

- broken Lorentz symmetry → new order
parameter(s) [Smilga et al '84]

- para- or diamagnetism [Bali, Bruckmann, GE et al '12, '13]
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Two comments in advance

• renormalization in magnetic �elds

• de�nition of pressure in magnetic �elds



Renormalization in magnetic �elds

• thermodynamic potential schematically (1-loop):

= + + + . . .

logZB = logZ0 + β1(eB)2 log a + c(eB)4 · finite + . . .

β1(eB)2 log a+
B2

2
=
B2
r

2

• coe�cient of O(B)2 contribution equals the

leading coe� of QED β-function [Schwinger '51]

→ background �eld method [Abbott '81]

• renormalization at T = 0 ⇔ subtract O((eB)2)

term from the free energy



De�nition of pressure in magnetic �elds

• free energy F = −T logZ
• consider a �nite volume V = LxLyLz, traversed

by a magnetic �ux Φ = eBLxLy
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• extensivity of F in a large homogeneous system

F(Li, B) = LxLyLz · f(B)

F(Li,Φ) = LxLyLz · f(Φ/LxLy)

• compression with B or Φ constant?

p
(B)
i = −

1

V

∂F
∂ logLi

, p
(Φ)
i = −

1

V

∂F
∂ logLi

−
1

V

∂F
∂B
·

∂B

∂ logLi

∣∣∣∣∣
Φ
,

• de�ne B- and Φ-schemes

p
(B)
x,y = p

(B)
z , p

(Φ)
x,y = p

(Φ)
z −M · eB



Magnetization on the lattice

• let's calculate M ∼ ∂ logZ/∂B
• quantization of magnetic �ux in a �nite volume

with periodic boundary conditions ['t Hooft '79]

Φ = eB · LxLy = 2πNb, Nb ∈ Z

⇒ B-derivative ill-de�ned! [DeTar's talk]

⇒ naturally corresponds to the Φ-scheme

• instead, determine magnetization from

px − pz = −M · eB

→ consider anisotropic lattice ξ = a/aα [Karsch '82]

pα = −ξ2T

V

d logZ
dξ

∣∣∣∣∣
a

,

• pα contains certain components of the action

→ M · eB contains anisotropies of the action



Magnetization from anisotropies

• dominant contribution comes from fermions:

M · eB ≈
∑
f

A(Cf)

• with the fermionic action

S =
∑
f

ψ̄f( /D +mf)ψf ,

separating into components

Cµ,f = ψ̄f /D(µ)ψf

building up the anisotropy

A(Cf) =

〈
Cx,f

〉
+
〈
Cy,f

〉
2

−
〈
Cz,f

〉
• see details in [Bali, Bruckmann, GE et al '13]



Magnetization from anisotropies

• charge renormalization for the magnetization

Mr · eB = M · eB − (eB)2 · lim
eB→0

M · eB
(eB)2

.

• QCD vacuum is a paramagnet!
cf. [Bonati's talk, DeTar's talk]

• comparison with HRG [GE '13]



Another approach to the EoS

• generalized integral method in {β,mf , Nb} space:
use that B has no e�ect in pure gauge theory!

logZ2 − logZ1 =
∫ 2

1

(
∂β logZ ∂mf logZ

)( dβ
dmf

)



Another approach to the EoS

• generalized integral method in {β,mf , Nb} space:
use that B has no e�ect in pure gauge theory!

• result: pressure along �xed �ux, i.e. �xed eB/T2

one more interpolation to get pz(B, T )



Comparison of the two methods

• two completely di�erent ways to get pz(T,B)



Summary

• renormalization:
O(B2) subtraction at T = 0

= + + + . . .

• distinct pressure de�nitions:
B-scheme (isotropy) vs.
Φ-scheme (anisotropy)

• B-dependence of QCD pressure
determined

- magnetization from lattice
anisotropies [arXiv:1303.1328]

- pressure through generalized
integral method [preliminary]



The condensate has it all
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