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QCD and magnetic fields

e examples for systems with strongly interacting
matter and magnetic fields:

- dense neutron stars, magnetars
- nhon-central heavy ion collisions
- early universe cosmology
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QCD and magnetic fields

e examples for systems with strongly interacting
matter and magnetic fields:

- dense neutron stars, magnetars
- non-central heavy ion collisions
- early universe cosmology
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QCD and magnetic fields

examples for systems with strongly interacting
matter and magnetic fields:

dense neutron stars, magnetars
non-central heavy ion collisions
early universe cosmology

QCD vacuum: charged quarks and neutral gluons
= external B-field acts as probe of QCD vacuum:

affects chiral symmetry breaking [Gusynin et al '96]
changes the hadron spectrum
phase diagram structure [Bruckmann’s talk, Kovacs's talk]

broken Lorentz symmetry — new order
parameter(s) [Smilga et al '84]

para- or diamagnetism [Bali, Bruckmann, GE et al '12, "13]
equation of state



QCD and magnetic fields

examples for systems with strongly interacting
matter and magnetic fields:

dense neutron stars, magnetars
non-central heavy ion collisions
early universe cosmology

QCD vacuum: charged quarks and neutral gluons
= external B-field acts as probe of QCD vacuum:

affects chiral symmetry breaking [Gusynin et al '96]
changes the hadron spectrum
phase diagram structure [Bruckmann’s talk, Kovacs's talk]

broken Lorentz symmetry — new order
parameter(s) [Smilga et al '84]

para- or diamagnetism [Bali, Bruckmann, GE et al '12, "13]
equation of state: preliminary lattice results



Two comments in advance

e renormalization in magnetic fields
e definition of pressure in magnetic fields



Renormalization in magnetic fields

e thermodynamic potential schematically (1-loop):

Q-0+~ + XL+

log Zg = log Zy + B1(eB)?loga + c(eB)? - finite + ...

B? _ B?
Bl(eB)Q log a + 5 — 77“

e coefficient of O(B)? contribution equals the
leading coeff of QED B-function [Schwinger '51]
— background field method [Abbott '81]

e renormalization at T'= 0 < subtract O((eB)?)
term from the free energy



Definition of pressure in magnetic fields

o free energy F = —-T'logZ

e consider a finite volume V = L;LyL,, traversed
by a magnetic flux & = eBLyLy




Definition of pressure in magnetic fields

e free energy F = -T'logZ

e consider a finite volume V = L;LyL,, traversed
by a magnetic flux ® = eBLyLy
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Definition of pressure in magnetic fields

o free energy F = —-TlogZ

e consider a finite volume V = L;LyL., traversed
by a magnetic flux & = eBLzLy

1 _d 119
F o F

D = = T, A

v dL, VedB
e extensivity of F in a large homogeneous system
F(Liy, B) = LgLyL, - f(B)
F(L;,®) = LyLyL, - f(®/LyLy)
e compression with B or & constant?

By _ 1 0F @ _ 1 _@F JeF  oF
Pi T TValog Ly ' ValogL; VOB dlogL|q’

e define B- and d-schemes

By =5 p$®) = p{® — M- eB



Magnetization on the lattice

let’s calculate M ~ dlog Z/0B

quantization of magnetic flux in a finite volume
with periodic boundary conditions ['t Hooft "79]

® = eB - LyLy = 27N, Ny € Z

= B-derivative ill-defined! [DeTar’s talk]
= naturally corresponds to the d-scheme

instead, determine magnetization from
pr —pz = —M -eB
— consider anisotropic lattice & = a/aq [Karsch '82]
B Qz dlog Z
Voode |’

a

Pa —

pPa CONtains certain components of the action
— M - eB contains anisotropies of the action



Magnetization from anisotropies

dominant contribution comes from fermions:

M -eB =~ ZA(Cf)
J
with the fermionic action

S = ;@f(lb-l-mf)?ﬂf,
separating into components
Cuf = @me(u)‘bf
building up the anisotropy

C, C
aepy = et u t) e,

see details in [Bali, Bruckmann, GE et al '13]



Magnetization from anisotropies

e charge renormalization for the magnetization
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e QCD vacuum is a paramagnet!
cf. [Bonati's talk, DeTar’s talk]

e comparison with HRG [GE "13]



Another approach to the EoS

e generalized integral method in {8, m¢, Ny} space:
use that B has no effect in pure gauge theory!

integral
in m,

integral in B
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Another approach to the EoS

e generalized integral method in {8, ms, N,} space:
use that B has no effect in pure gauge theory!
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e result: pressure along fixed flux, i.e. fixed eB/T?
one more interpolation to get p.(B,T)



Comparison of the two methods

e two completely different ways to get p.(T, B)
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Summary

e renormalization:
O(B?2) subtraction at T =0 -0+~ + LT+

e distinct pressure definitions:
B-scheme (isotropy) vs.
d-scheme (anisotropy)

e B-dependence of QCD pressure
determined

- magnetization from lattice
anisotropies [arXiv:1303.1328]

M (GeV2) x 102

- pressure through generalized
Integral method [preliminary]

p, (Gev*) x 10°




T he condensate has it all

0O _
Alog Z = —/ dmADY, P = project O(B2)
Mphys
xo _ —
PAlog Z+§1—P)Alogz’§= —/ dm [PA¢¢—|—(1—P)A¢¢
Nrﬁl ~MT Mphys

i | | | I | | | I | | | | | | | | | | | I_
P ]
N 1 B E a= -
L o= |
NI -
A - [T 25 .
+ - -
E_‘f 0.5 B 7
< N = _
[ / T=0 ]
- ]
O r%hl 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 I_

02 0.4 06 08 1
eB (GeV?)

| I



Alogz == dmAdy,

T he condensate has it all
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magnetic
catalysis at T=0

T cont. limit
- - quadratic term
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