Nonperturbative tests of the renormalisation of mixed clover-staggered currents in lattice QCD

Bipasha Chakraborty

University of Glasgow HPQCD Collaboration* *Christine Davies, Gordon Donald, Rachel Dowdall, Jonna Koponen, G. Peter Lepage

Lattice 2013 July 31st, 2013

Motivation

- The leptonic decay constants of heavy-light mesons: Important physical quantities in LQCD
- Different LQCD methods used to compare the systematic errors
- We focus on the systematic errors in the current renormalisations appearing in the Fermilab method

Fermilab Method and Our Aim

- Fermilab used Asqtad light valence quarks and clover bottom and charm quarks (arXiv:1112.3051)
- Z_{A^µ_{Qq}} calculated partly non-perturbatively and partly in one-loop perturbation theory
- Definition: $Z_{A_{Qq}^4} = \rho_{A_{Qq}^4} \sqrt{Z_{V_{qq}^4} Z_{V_{QQ}^4}}$ for local vector currents
- *ρ*_{A⁴_{Qq}} close to unity at 1-loop in lattice perturbation theory
- They believe $\rho_{{\cal A}^4_{{\cal Q}q}}$ close to unity for higher orders too

(Aida X. El-Khadra et al., arXiv:0710.1437) Our Aim : To test the generality of this claim fully non-perturbatively using HISQ-HISQ, Clover-Clover and mixed Clover-HISQ currents made of strange valence quarks

Our method: Non-perturbative Calculation of Z_{A^4} and Z_{V^4}

- Valence strange quark masses tuned to $m_{\eta_s} = 688.5$ Mev (R.J.Dowdall et.al., arXiv:1303.1670)
- The η_s decay constant: $\langle 0|A^4|\eta_s(0)\rangle = m_{\eta_s}f_{\eta_s}$
- Absolutely normalized HISQ-HISQ temporal axial vector current
- $Z_{A_{Cl-H}^4}$ for Clover-HISQ discretization: $Z_{A_{Cl-H}^4} f_{\eta_s}^{Cl-H} = f_{\eta_s}^{H-H}$

- Normalization at zero momentum transfer: $1 = Z_{V_{qq}^4} \langle H_q | V_{qq}^4 | H_q \rangle$
- Need to use local vector currents
- Need to use unstaggered (clover) quark at the bottom of the three point functions for HISQ-HISQ local vector current

Lattice Configurations and Parameters

- Three MILC lattice ensembles: a ≈0.15fm (very coarse), 0.12fm (coarse), 0.09fm (fine)
- 2 + 1 + 1 flavors of HISQ sea quarks: $m_l/m_s \approx 0.2$

Set	β	<i>a</i> (fm)	amı	am₅	am _c	L _s /a	L _t /a	<i>u</i> ₀
VC	5.80	0.1543(8)	0.013	0.065	0.838	16	48	0.85535
С	6.00	0.1241(7)	0.0102	0.0509	0.635	24	64	0.86372
F	6.30	0.0907(5)	0.0074	0.0507	0.4400	32	96	0.87417

- Source: Delta function random color wall with subset corner mask
- Point sink

Set	am _s ^{HISQ,val}	Ks ^{Clover,val}	n _{cfg}	n _t
VC	0.0705(9)(4)	0.14082	1021	12
С	0.0541(6)(3)	0.13990	527	16
F	0.0376(5)(2)	0.13862	504	16

Our Results

• $Z_{A^4_{CI-H}} = \rho_{A^4_{CI-H}} \sqrt{Z_{V^4_{CI-CI}} Z_{V^4_{H-H}}}$

Set	Combinations	Z_{A^4}	Z_{V^4}	$ ho_{A^4{}_{ab}}$
VC	H-H	1.000	0.9887(20)	-
	CI-CI	0.2046(4)	0.2045(3)	-
	CI-H	0.4642(6)	-	1.0322(21)
С	H-H	1.000	0.9938(17)	-
	CI-CI	0.2096(4)	0.2071(4)	-
	CI-H	0.4656(4)	-	1.0263(36)
F	H-H	1.000	0.9944(10)	-
	CI-CI	0.2152(4)	0.2116(4)	-
	CI-H	0.4679(7)	-	1.0199(33)

*ρ*_{A⁴_{Cl-H}} indeed close to 1.0 up to all orders of lattice perturbation theory
 *Z*_{V⁴Cl-Cl} and *Z*_{A⁴Cl-Cl} close too

(日)

Our results for $\rho_{A^4_{Cl-Hl}}$

• $\rho_{A^4_{CI-H}}$ is close to 1.0 up to all orders of lattice perturbation theory with a maximum deviation of ~ 3% on very coarse lattice

Comparison of $\rho_{A^4_{CI-H}}$ values

- Our numbers are not actually as close to 1.0 as Fermilab's 1-loop Clover-Asqtad results
- May be sensible to increase errors from the one loop calculation up to 2.5% to encompass our numbers

Discretization effects

 The difference of the η_s mass obtained from H-H and CI-H methods is a discretization effect.

Discretization Errors: $m_{\phi} - m_{\eta_s}$ extrapolation to a = 0

- All three methods of calculating correlators agree in the continuum limit.
- H-H discretization errors much smaller than CI-CI and CI-H discretizations
- Lattice results higher than the experimental result; But ϕ non-gold-plated

Discretization Errors: f_{ϕ} extrapolation to a = 0

- $Z_{V^4_{CI-CI}}$ and $Z_{V^4_{H-H}}$ used in f_{ϕ}
- Lattice f_{ϕ} results match with experimental result up to 1.5 σ

Comparing Statistical Errors

- One clover propagator costs ~4 times as much as one HISQ propagator
- One Clover propagator 16 times bigger than one HISQ propagator
- Statistical errors similar for both methods on coarse and fine lattices

Conclusion and Ongoing Work

- Conclusions:
 - $\rho_{A^4_{CI-H}}$ close to 1.0 with a maximum ~ 3% deviation using the non-perturbative lattice calculations with pure HISQ, pure Clover and mixed Clover-HISQ currents.
 - Increasing Fermilab's errors from 0.7% to 2.5% in one loop perturbative calculation recommended
 - Discretization errors much smaller from HISQ than Clover
 - Statistical errors similar for Clover and HISQ on coarse and fine lattices, but Clover lot more costly
- Ongoing works:
 - To look at $\rho_{V^4{}_{Cl-H}}$ using $Z_{V^4{}_{Cl-H}}$
 - To study vector meson ϕ on the physical point lattices