NPR of bilinear operators with improved staggered quarks

Jangho Kim, Jongjeong Kim, Weonjong Lee, Stephen R. Sharpe, Boram Yoon

SWME Collaboration

Lattice 2013
We present matching factors for the bilinear operators obtained using the non-perturbative renormalization method (NPR) for improved staggered fermions on the MILC asqtad lattices ($N_f = 2 + 1$).

We obtain the wave function renormalization factor Z_q from the conserved vector and axial currents. Also we obtain the mass renormalization factor Z_m from scalar and pseudo-scalar bilinear operators.

We also calculate the renormalization factor of bilinear operators whose taste are scalar or pseudo-scalar.
Bilinear Operator Renormalization

- \tilde{p} is the momentum in reduced Brillouin zone.

\[p \in \left(-\frac{\pi}{a}, \frac{\pi}{a} \right]^4, \quad \tilde{p} \in \left(-\frac{\pi}{2a}, \frac{\pi}{2a} \right]^4, \quad p = \tilde{p} + \pi_B \]

where $\pi_B(\equiv \frac{\pi}{a} B)$ is cut-off momentum in hypercube.

- a : lattice spacing.
- B : vector in hypercube. Each element is 0 or 1
 ex) $B = (0, 0, 1, 1)$
Figure: The Green’s functions of bilinear operator: The diagrams that contribute to bilinear operator.
Bilinear Operator Renormalization

Red Circle : 1PI Diagram.

Unamputated Green's function
\(\tilde{\mathcal{H}}^\alpha \)

Amputated Green's function
\(\tilde{\Lambda}^\alpha \)

Jangho Kim, Jongjeong Kim, Weonjong Lee, Stephen R. Sharpe, Boram Yoon (SWME Collaboration)
Bilinear Operator Renormalization

\[\alpha, \beta : \text{the indices to represent different operators.} \]
\[\text{ex) } \alpha = (\gamma_\mu \otimes 1), \beta = (1 \otimes 1) \]

\[\text{M.C. : momentum conservation condition. } \tilde{p} = \tilde{q} + \tilde{k} \]
The projection operator is

\[\hat{P}_{BA; c_2c_1}^\beta = \frac{1}{48} (\gamma_S^\dagger \otimes \xi_F^\dagger)_{BA} \delta_{c_2c_1} \]

The renormalization of \(\Gamma(\tilde{p}, \tilde{q}) \) is

\[\Gamma_{R(\tilde{p}, \tilde{q})}^{\alpha\sigma} = \sum_{\beta} Z_q^{-1} Z_O^{\alpha\beta} \Gamma_0^{\beta\sigma}(\tilde{p}, \tilde{q}) \]

- \(A, B \): hypercube index
- \(c \): color index
- \(\alpha, \beta, \sigma \): the indices to represent different operators.
- \(\Gamma_0 \): bare projected amputated Green’s function
- \(\Gamma_R \): renormalized projected amputated Green’s function
- \(Z_q \): the wave function renormalization factor for quark fields
- \(Z_O^{\alpha\beta} \): the renormalization factor of operator.
The RI-MOM scheme prescription is

$$\Gamma_{R}^{\alpha\sigma}(\tilde{p}, \tilde{p}) = \Gamma_{\text{tree}}^{\alpha\sigma}(\tilde{p}, \tilde{p}) = \delta^{\alpha\sigma},$$

where $\Gamma_{\text{tree}}^{\alpha\sigma}(\tilde{p}, \tilde{p})$ is tree level projected amputated Green’s function.

Therefore

$$Z_{q} \cdot (Z_{O}^{-1})^{\alpha\beta} = \Gamma_{0}^{\alpha\beta}(\tilde{p}, \tilde{p})$$
Simulation Detail

- $20^3 \times 64$ MILC asqtad lattice ($a \approx 0.12fm$, $am_{\ell}/am_s = 0.01/0.05$).
- HYP smearing
- The number of configurations is 30.
- 5 valence quark masses (0.01, 0.02, 0.03, 0.04, 0.05)
- 14 external momenta in the units of $(\frac{2\pi}{L_s}, \frac{2\pi}{L_s}, \frac{2\pi}{L_s}, \frac{2\pi}{L_t})$.

<table>
<thead>
<tr>
<th>$n(x, y, z, t)$</th>
<th>$a\tilde{p}$</th>
<th>GeV</th>
<th>$n(x, y, z, t)$</th>
<th>$a\tilde{p}$</th>
<th>GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 0, 1, 3)</td>
<td>0.5330</td>
<td>0.8835</td>
<td>(1, 2, 2, 4)</td>
<td>1.0210</td>
<td>1.6922</td>
</tr>
<tr>
<td>(1, 1, 1, 2)</td>
<td>0.5785</td>
<td>0.9588</td>
<td>(2, 1, 2, 6)</td>
<td>1.1114</td>
<td>1.8420</td>
</tr>
<tr>
<td>(1, 1, 1, 3)</td>
<td>0.6187</td>
<td>1.0254</td>
<td>(2, 2, 2, 7)</td>
<td>1.2871</td>
<td>2.1332</td>
</tr>
<tr>
<td>(1, 1, 1, 4)</td>
<td>0.6710</td>
<td>1.1122</td>
<td>(2, 2, 2, 8)</td>
<td>1.3421</td>
<td>2.2243</td>
</tr>
<tr>
<td>(1, 1, 1, 5)</td>
<td>0.7328</td>
<td>1.2146</td>
<td>(2, 2, 2, 9)</td>
<td>1.4018</td>
<td>2.3233</td>
</tr>
<tr>
<td>(1, 1, 1, 6)</td>
<td>0.8019</td>
<td>1.3291</td>
<td>(2, 3, 2, 7)</td>
<td>1.4663</td>
<td>2.4302</td>
</tr>
<tr>
<td>(1, 2, 1, 5)</td>
<td>0.9128</td>
<td>1.5128</td>
<td>(3, 3, 3, 9)</td>
<td>1.8562</td>
<td>3.0764</td>
</tr>
</tbody>
</table>
For the conserved vector current, the renormalization factor $Z_{O}^{\alpha \beta} = 1$.

Therefore

$$Z_{q} = \Gamma_{0}^{\alpha \beta} (\tilde{p}, \tilde{p}),$$

where $\alpha = \beta = (\gamma_{\mu} \otimes 1)$.
RI-MOM scheme to SI scheme

We divide the RI-MOM scheme data by the RG running factor to calculate the scale-invariant (SI) quantity.

\[Z_{q}^{SI} = \frac{c(\alpha_s(\mu_0))}{c(\alpha_s(\mu))} Z_{q}^{RI-MOM}(\mu), \quad (\mu_0 = 2\text{GeV}, \quad \mu^2 = \tilde{p}^2) \]

This Wilson coefficient \(c(x) \) is calculated using four-loop running formula.

The data point is \(y = \frac{Z_q}{Z_{V \otimes S}} \).

![Graphs showing RI-MOM and SI schemes](image-url)
Mass Fitting \((y = \frac{Z_q}{Z_{V \otimes S}}) \)

We use linear fit for mass fitting and take chiral limit value for each momentum.

\[
\begin{align*}
\chi^2/\text{d.o.f} & = 0.0024(62) \\
\end{align*}
\]

\[
\begin{array}{c|c|c}
\hline
\text{am} & 0.76016(15) & -0.0049(21) \\
\hline
\end{array}
\]

\[
f(m, a, \tilde{p}) = c_1 + c_2(\text{am})
\]
Momentum Fitting \(y = \frac{Z_q}{Z_{V \otimes S}} \)

We fit using \((a\tilde{p})^2 > 1\) data to avoid non-perturbative effects at small \((a\tilde{p})^2\). The fitting function is a power series of \((a\tilde{p})^2\).

\[
f(m, a, \tilde{p}) = c_1 + c_2 (a\tilde{p})^2 + c_3 ((a\tilde{p})^2)^2 + c_4 ((a\tilde{p})^2)^3
\]

To remove the discretization error, we take the \((a\tilde{p})^2 \to 0\) limit after fitting.

\[
\begin{array}{cc}
c_1 & c_2 \\
1.0764(44) & -0.1908(69) \\
c_3 & c_4 \\
0.0279(33) & -0.00350(49) \\
\chi^2/d.o.f & \\
0.06(16)
\end{array}
\]
Scalar Bilinear Operator \((1 \otimes 1)\) Analysis

By the Ward-Takahashi identity,

\[Z_m = \frac{1}{Z_S} \]

Therefore

\[\frac{Z_q}{Z^{\alpha\beta}_O} = \Gamma_0^{\alpha\beta}(\tilde{p}, \tilde{p}) = Z_q \cdot Z_m, \]

where \(\alpha = \beta = (1 \otimes 1)\).
RI-MOM scheme to SI scheme

We divide the RI-MOM scheme data by the RG running factor to calculate the scale-invariant (SI) quantity.

\[
Z_{q}^{SI} \cdot Z_{m}^{SI} = \frac{c(\alpha_s(\mu_0))}{c(\alpha_s(\mu))} Z_{q}^{RI-MOM}(\mu) \cdot \frac{c'(\alpha_s(\mu_0))}{c'(\alpha_s(\mu))} Z_{m}^{RI-MOM}(\mu)
\]

\[
(\mu_0 = 2\text{GeV}, \quad \mu^2 = \bar{\rho}^2)
\]
Mass Fitting

From the Ward-Takahashi identity, the amputated Green’s function is

$$\Lambda_S = \frac{1}{48} \frac{\partial Tr[S^{-1}(\tilde{p})]}{\partial m}$$

where $S(\tilde{p})$ is quark propagator. and the propagator is

$$\frac{1}{48} Tr[S^{-1}(\tilde{p})] = C_1 \frac{Z_q \langle \bar{\chi}\chi \rangle}{\tilde{p}^2} + Z_q Z_m m + \ldots$$

When we consider the effect of zero-modes on chiral condensate term,

$$\langle \bar{\chi}\chi \rangle \sim \frac{n_0}{m V}$$

where n_0 is the number of zero-modes, V is the four dimensional space-time volume.

So we take derivative about mass on chiral condensate term, we can obtain $\frac{1}{(am)^2}$ term.
The fitting function is

\[f(m, a, \bar{p}) = c_1 + c_2 (am) + c_3 (am)^2 + c_4 \frac{1}{(am)^2}, \]

We take \(c_1 \) as a chiral limit value.

The data point is \(y = Z_q \cdot Z_m = \frac{Z_q}{Z_{S \otimes S}} \).

\[\begin{array}{c c}
 c_1 & c_2 \\
 1.4036(22) & -0.573(72) \\
 c_3 & c_4 \\
 0.28(67) & 0.000001 \\
 \chi^2/\text{d.o.f} & \\
 0.00008(51) \\
\end{array} \]
Momentum Fitting \((y = Z_q \cdot Z_m = \frac{Z_q}{Z_{S\otimes S}}) \)

We fit using \((a\tilde{p})^2 > 1\) data to avoid non-perturbative effects at small \((a\tilde{p})^2\). The fitting function is a power series of \((a\tilde{p})^2\).

\[
f(m, a, \tilde{p}) = c_1 + c_2(a\tilde{p})^2 + c_3((a\tilde{p})^2)^2
\]

To remove the discretization error, we take the \((a\tilde{p})^2 \rightarrow 0\) limit after fitting.

\[
\begin{array}{c|c|c}
 & c_1 & c_2 \\
\hline
 c_1 & 1.342(16) & 0.041(12) \\
 c_3 & -0.0060(21) & 0.18(28) \\
\end{array}
\]
Preliminary Result

<table>
<thead>
<tr>
<th>Z_q</th>
<th>NPR</th>
<th>χ^2/dof (m_q fit)</th>
<th>χ^2/dof (\tilde{p} fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>($\gamma_\mu \otimes 1$)</td>
<td>1.0764(44)</td>
<td>0.0024(62)</td>
<td>0.06(16)</td>
</tr>
<tr>
<td>($\gamma_\mu 5 \otimes \gamma_5$)</td>
<td>1.075(32)</td>
<td>0.0003(27)</td>
<td>0.12(28)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Z_m</th>
<th>NPR</th>
<th>χ^2/dof (m_q fit)</th>
<th>χ^2/dof (\tilde{p} fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 \otimes 1)</td>
<td>1.246(15)</td>
<td>0.00008(51)</td>
<td>0.18(28)</td>
</tr>
<tr>
<td>($\gamma_5 \otimes \gamma_5$)</td>
<td>1.255(18)</td>
<td>0.0000008(36)</td>
<td>0.06(19)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$Z^{\alpha\alpha}_O$</th>
<th>NPR</th>
<th>χ^2/dof (m_q fit)</th>
<th>χ^2/dof (\tilde{p} fit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>($\gamma_5 \otimes 1$)</td>
<td>1.113(20)</td>
<td>0.0397(22)</td>
<td>0.40(35)</td>
</tr>
<tr>
<td>($\gamma_\mu 5 \otimes 1$)</td>
<td>1.131(23)</td>
<td>0.0001(12)</td>
<td>0.11(41)</td>
</tr>
<tr>
<td>($\gamma_\mu \gamma_\nu \otimes 1$)</td>
<td>1.125(21)</td>
<td>0.0003(24)</td>
<td>0.76(51)</td>
</tr>
<tr>
<td>(1 $\otimes \gamma_5$)</td>
<td>1.079(18)</td>
<td>0.000004(23)</td>
<td>0.19(48)</td>
</tr>
<tr>
<td>($\gamma_\mu \otimes \gamma_5$)</td>
<td>1.157(10)</td>
<td>0.000004(23)</td>
<td>0.40(60)</td>
</tr>
<tr>
<td>($\gamma_\mu \gamma_\nu \otimes \gamma_5$)</td>
<td>1.154(23)</td>
<td>0.0008(34)</td>
<td>0.56(47)</td>
</tr>
</tbody>
</table>
We obtain the wave function renormalization factor Z_q from conserved vector and axial current and mass renormalization factor Z_m from scalar and pseudo-scalar bilinear operators.

Also we calculate the renormalization factor of bilinear operators which has scalar or pseudo-scalar taste.

We plan to analyse other bilinear operators which have V, A, T tastes in near future.