COMBINED NNLO LATTICE/CONTINUUM ANALYSIS OF THE FLAVOR *ud* V-A CORRELATOR

with

P. Boyle, L. Del Debbio, N. Garron, R. Hudspith, E. Kerrane, J. Zanotti

+ D. Boito, M. Golterman, M. Jamin, S. Peris

Lattice 2013, Mainz, July 31/13

OUTLINE

- $\Pi_{ud;V-A}(Q^2)$: from data, the lattice, and at NNLO
- A problem for the continuum NNLO L_{10}^r determination
- Resolving the problem with lattice data
- Further improvement with chiral sum rule input

THE V-A CORRELATOR

• J = 0, 1 scalar correlators $\Pi_{V-A;ud}^{(J)}(Q^2)$

• Continuum (Minkowski):

$$\Pi_{V/A}^{\mu\nu}(q^2) \equiv i \int d^4x \, e^{iq \cdot x} \langle 0 | T \left(J_{V/A}^{ud,\mu}(x) J_{V/A}^{ud^{\dagger}\nu}(0) \right) | 0 \rangle$$

= $\left(q^{\mu}q^{\nu} - q^2 g^{\mu\nu} \right) \Pi_{V/A}^{(1)}(q^2) + q^{\mu}q^{\nu} \Pi_{V/A}^{(0)}(q^2)$

• Euclidean (lattice) version:

$$\Pi^{\mu\nu}_{V/A}(Q^2) = \left(Q^2 \delta^{\mu\nu} - Q^{\mu}Q^{\nu}\right) \Pi^{(1)}_{V/A}(Q^2) - Q^{\mu}Q^{\nu}\Pi^{(0)}_{V/A}(Q^2)$$

• For LEC determinations, convenient to focus on π pole-subtracted J = 0 + 1 combination

$$\Delta \bar{\Pi}(Q^2) \equiv \Pi_{V-A}^{(0+1)}(Q^2) + \frac{2f_{\pi}^2}{m_{\pi}^2 + Q^2}$$

- $\circ~J=0+1$ sum avoids kinematic singularities
- Dispersive representation for physical m_q from experimentally accessible continuum ud, V-A spectral function, $\Delta \rho(s) \equiv \rho_{V-A}^{cont}(s)$
- $\circ~$ Ensemble $f_{\pi},~m_{\pi}$ for pole subtraction in lattice cases

• Continuum (physical m_q) $\Delta \overline{\Pi}(Q^2)$ results

Dispersive representation

$$\Delta \Pi(Q^2) = \int_0^\infty ds \frac{\Delta \rho(s)}{s+Q^2}$$

• $\Delta \rho(s)$ from

* OPAL hadronic au decay data, $s < m_{ au}^2$

- * Higher s: physical DV ansatz, fitted to V, A τ decay data [PRD85 (2012) 093015 for details]
- $\Delta \overline{\Pi}(Q^2)$ at low Q^2 of interest for LEC determination STRONGLY data dominated

• Lattice data for $\Delta \overline{\Pi}(Q^2)$

• From RBC/UKQCD $n_f = 2 + 1$ DWF ensembles

- FINE: $32^3 \times 64 \times 16_5$, 1/a = 2.31 GeV, Iwasaki gauge, $L \sim 2.7$ fm, $m_{\pi} = 293$, 349, 399 MeV [PRD83 (2011) 074508 for details]
- **COARSE:** $32^3 \times 64 \times 32_5$, 1/a = 1.37 GeV, Iwasaki + DSDR, $L \sim 4.6 \ fm$, $m_{\pi} = 171$, 248 MeV [PRD87 (2012) 094514 for details]
- Limited low-Q² coverage for fine ensembles, improved for coarse

A few key observations re lattice, continuum results

- NNLO analysis of continuum $\Delta \overline{\Pi}(Q^2)$ [D. Boito et al. PRD87 (2013) 094008 for details] shows [Figure]
 - NNLO contributions significant \Rightarrow old continuum, lattice NLO L_{10}^r determinations NOT reliable

 $\circ~Q^2 < 0.3~GeV^2$ for NNLO+ analysis to follow

• Lattice $\Delta \overline{\Pi}(Q^2)$ errors comparable to continuum for $Q^2 > \sim 0.3 \ GeV^2$ BUT larger for Q^2 in range of NNLO analysis (especially for lowest Q^2) [FIGURE]

$\Delta \overline{\Pi}(Q^2)$ to NNLO in the chiral expansion

• The NNLO representation [ABT, NPB568 (2000) 319]

$$\Delta \bar{\Pi}(Q^2) = \mathcal{R}(Q^2) + C_9(Q^2) L_9^r - 16Q^2 C_{87}^r + [-8 + 32(2\mu_\pi + \mu_K)] L_{10}^r + \mathcal{C}_0 + \mathcal{C}_1$$

with $\mu_P = \frac{m_P^2}{32\pi^2 f_\pi^2} \log\left(\frac{m_P^2}{\mu^2}\right)$
 $\mathcal{C}_0 \equiv 32m_\pi^2 \left(C_{12}^r - C_{61}^r + C_{80}^r\right) \equiv 32m_\pi^2 \hat{\mathcal{C}}_0$
 $\mathcal{C}_1 \equiv 32 \left(m_\pi^2 + 2m_K^2\right) \left(C_{13}^r - C_{62}^r + C_{81}^r\right)$
 $\equiv 32 \left(m_\pi^2 + 2m_K^2\right) \hat{\mathcal{C}}_1$

and $C_9(Q^2)$, $\mathcal{R}(Q^2)$ completely known in terms of the chiral renormalization scale μ and PS masses $\{m_P\}$

- Existing input/features of the NNLO representation
 - L_9^r well known from NNLO π charge radius analysis [Bijnens, Talavera, JHEP 0203 (2002) 046]
 - NNLO correction to L_{10}^r coefficient (-4.1650 for physical $\{m_P\}$) c.f. NLO contribution -8
 - NNLO LEC combination $\hat{C}_0 = C_{12}^r C_{61}^r + C_{80}^r$ LO in $1/N_c$, $C_{12,61}^r$ experimentally accessible, C_{80}^r from RChPT (m_{π}^2 prefactor makes C_0 safely negligible)
 - NNLO LEC combination $\hat{C}_1 = C_{13}^r C_{62}^r + C_{81}^r$ NLO in $1/N_c$, NOT experimentally accessible
 - RChPT estimate for C_1 unavailable (resonant contributions to $C_{13,62,80}^r$ absent in RChPT)

- The continuum NNLO L_{10}^r determination problem
 - L_{10}^r , C_0 , C_1 contributions all Q^2 -independent ⇒ separation of term involving L_{10}^r impossible
 - Mass enhancement $\left(m_{\pi}^2 + 2m_K^2\right)/m_{\pi}^2$ of C_1 relative to C_0 ($\simeq 26$ for physical $\{m_P\}$) more than undoes the $1/N_c$ LEC suppression
 - Previous NNLO continuum L_{10}^r determination [GAPP, PRD78 (2010) 116012] uses (non-conservative) guess $\hat{C}_1 = 0 \pm |\hat{C}_0|/3$ (DANGER: cancellations in \hat{C}_0)
 - Resulting L_{10}^r error entirely dominated by assumed (non-conservative) C_1 range

- Lattice input to the continuum NNLO problem
 - Separation of L_{10}^r , C_0 , C_1 contributions from differing $\{m_P\}$ dependences via ensembles with a range of m_q ($\{m_P\}$)
 - \circ FIRST PASS: L_{10}^r , C_0 , C_1 fit using
 - * NNLO constraint associated with accurate continuum (physical m_q) $\Delta \overline{\Pi}(0)$ determination
 - * Ensemble-dependent constraints on L_{10}^r , C_0 , C_1 from DWF ensembles noted above
 - SECOND PASS: Further improvement using additional continuum constraint (from new FB ud - us, V - A chiral sum rule)

- A bit more on the FIRST PASS analysis
 - The continuum $\Delta \overline{\Pi}(0)$ constraint ($\mu_{ch} = 0.77 \ GeV$) [Boito et al. PRD87 (2013) 094008]

 $L_{10}^r - 0.0822(\mathcal{C}_0 + \mathcal{C}_1) = -0.00410(6)_{exp}(7)_{L_9^r}$

 Ensemble-dependent continuum/lattice constraints from fixed- Q^2 differences

 $\Delta\left(\Delta\bar{\Pi}(Q^2)\right) \equiv \left[\Delta\bar{\Pi}(Q^2)\right]_{latt} - \left[\Delta\bar{\Pi}(Q^2)\right]_{cont}$

through the NNLO representation

 $\Delta\left(\Delta\overline{\Pi}(Q^2)\right) = \Delta\mathcal{R}(Q^2) + \Delta c_{10}L_{10}^r + \delta_0\mathcal{C}_0 + \delta_1\mathcal{C}_1$

- * $\Delta \mathcal{R}(Q^2)$, Δc_{10} , $\delta_{0,1}$ fixed by μ_{ch} , physical and ensemble $\{m_P\}$ and L_9^r ($\Delta \mathcal{R}$ only)
- * $\Delta \left(\Delta \overline{\Pi}(Q^2) \right) \Delta \mathcal{R}(Q^2)$: self-consistency-checked constraint on ensemble-dependent, Q^2 -independent combination $\Delta c_{10} L_{10}^r + \delta_0 C_0 + \delta_1 C_1$

• Fit results for $\mu = \mu_{ch}$

$$L_{10}^r = -0.0031(8)$$

 $C_0 = -0.00081(82)$
 $C_1 = 0.014(11)$

• First NNLO L_{10}^r result with NNLO LEC uncertainties under control, BUT L_{10}^r error larger than ideal

- Improving L_{10}^r with new chiral sum rule input
 - New constraint on L_{10}^r , C_0 from $Q^2 = 0$ value of FB difference of π -, K-pole-subtracted ud, us V-A correlators

$$\bar{\Pi}_{ud-us}^{V-A}(Q^2) \equiv \bar{\Pi}_{ud;V-A}^{(0+1)}(Q^2) - \bar{\Pi}_{us;V-A}^{(0+1)}(Q^2)$$

- $\overline{\Pi}_{ud-us}^{V-A}(0)$ determinable from Inverse Moment (Chiral) Sum Rules (IMSR) (here: FESRs with weight $1/s \times \text{polynomial})$
- Convenient choice: generalization of Durr-Kambor ud-us V channel analysis [PRD61 (2000) 114025]

• Basic IMSR relation (Cauchy's Theorem) for polynomial w(s), kinematic-singularity-free $\Pi(Q^2)$

$$w(0) \Pi(0) = \frac{1}{2\pi i} \int_{|s|=s_0} ds \frac{w(s)}{s} \Pi(Q^2) + \int_{th}^{s_0} ds \frac{w(s)}{s} \rho(s)$$

• Here: IMSR with
$$\Pi = \Pi_{ud-us;V-A}^{(0+1)}$$
, $w(s) = w_{DK}(y)$
 $[y = s/s_0, w_{DK}(y) = (1-y)^3 \left(1+y+\frac{1}{2}y^2\right)]$

 \circ Separating continuum from π -, K-pole term contributions ($y_{\pi,K}\equiv m_{\pi,K}^2/s_0)$

$$\bar{\Pi}_{ud-us}^{V-A}(0) = \frac{1}{2\pi i} \int_{|s|=s_0} ds \frac{w_{DK}(y)}{s} \Pi_{ud-us;V-A}^{(0+1)}(Q^2) + \int_{th}^{s_0} ds \frac{w_{DK}(y)}{s} \left[\rho_{ud;V-A}^{(0+1)}(s) - \rho_{us;V-A}^{(0+1)}(s) \right]_{cont} + \frac{2f_K^2}{m_K^2} \left[w_{DK}(y_K) - 1 \right] - \frac{2f_\pi^2}{m_\pi^2} \left[w_{DK}(y_\pi) - 1 \right]$$

• RHS: line 1: OPE; lines 2, 3: data

• RHS contributions (skipping MANY details):

- * Residual π , K pole terms accurately known
- * PDG input for OPE contour integral
- * OPE contribution numerically small (leading D = 2,4 terms $O(\alpha_s)$ and chirally suppressed: D = 2 $O(\alpha_s m_s^2)$; $D = 4 O(\alpha_s m_s \langle \bar{q}q \rangle)$)
- * ud V-A spectral function from OPAL non-strange differential τ -decay distribution data, covariances (updated for current branching fractions)

- * us V-A spectral function from sum over strange exclusive mode differential τ -decay distributions
 - ⊲ New precision BaBar, Belle $K\pi$ (pure V), $K\pi\pi$ (mixed V,A) results crucial to accuracy
 - Modes with no BaBar/Belle update: ALEPH
 1999 distributions, rescaled for modern BFs
 - \triangleleft 50±50%, 100% anticorrelated V/A split for contributions where separation ambiguous
 - ⊲ Good errors in spite of higher-multiplicity-mode V/A separation ambiguities due to strong highers suppression (1/s weighting, 3rd-order zero at $s = s_0$ in $w_{DK}(y)$)

* NOTE: all terms on RHS s_0 -dependent, LHS s_0 independent $\Rightarrow s_0$ -stability cross-check

• Very good s_0 -stability for sum [Figure] $\bar{\Pi}_{ud-us}^{V-A}(0) = 0.01126 (136)_{exp,OPE} (5)_{s_0}$

 \circ Implementing known terms in NNLO representation $\Rightarrow \mu_{ch} = 0.77~{\rm GeV}$ version of IMSR constraint

 $2.125 L_{10}^r - 11.61 C_0 = -0.00346(149)$

 \circ Combining with earlier constraints yields the improved $\mu=\mu_{ch}$ results

	L_{10}^r	\mathcal{C}_{0}	\mathcal{C}_1
1^{st} Pass	-0.0031(8)	-0.00081(82)	0.0136(106)
2 nd Pass	-0.00346(29)	-0.00034(12)	0.0081(31)

CONCLUSIONS

- Pure continuum NNLO L_{10}^r determination problematic (no input on key NNLO LEC combination C_1)
- Lattice errors at low Q^2 too large at present to allow pure lattice NNLO determination
- Nonetheless, lattice data allows C_1 determination, especially in combination with new IMSR C_0 constraint
- Final result, $L_{10}^r(\mu_{ch}) = -0.00346(29)$, is only determination with NNLO LEC errors under actual control

- Note: additional L_{10}^r uncertainty from missing $O(p^8)$ and higher contributions potentially $\sim 10\%$ in view of $\sim 30\%$ shift between NLO and NNLO
- Values for other LECs determined along the way $[C_{87}^r, C_{80}^r, updated C_{61}^r]$ reported elsewhere
- Determination of C_1 allows finalization of Gasser et al. [PLB652 (2007) 21] NNLO relation between ℓ_5^r , L_{10}^r

 $\ell_5^r(\mu_{ch}) = 1.362 L_{10}^r(\mu_{ch}) - 0.00031(8)_{L_9^r}(39)_{\mathcal{C}_1}$

(c.f. NLO version $\ell_5^r(\mu_{ch}) = L_{10}^r(\mu_{ch}) + 0.00003$)