Perturbatively improving renormalization constants

M. Constantinou¹, M. Costa¹, M. Göckeler², R. Horsley³, H. Panagopoulos¹, H. Perlt⁴, P. E. L. Rakow⁵, G. Schierholz⁶ and A. Schiller⁴

¹University of Cyprus, ²Universität Regensburg, ³University Edinburgh, ⁴Universität Leipzig, ⁵University Liverpool, ⁶DESY

Lattice 2013, Mainz, Germany, July 29 - August 3, 2013

1 Introduction

2 Renormalization constants in RGI scheme

3 Subtraction of $O(a^2)$ lattice artifacts in one-loop

4 Summary

Talk H. Perlt (Leipzig)

• I > • I > •

Introduction

2 Renormalization constants in RGI scheme

3 Subtraction of $O(a^2)$ lattice artifacts in one-loop

4 Summary

• □ > • □ > • □ > •

2 Renormalization constants in RGI scheme

3 Subtraction of $O(a^2)$ lattice artifacts in one-loop

4 Summary

• • • • • • • • • • • •

2 Renormalization constants in RGI scheme

3 Subtraction of $O(a^2)$ lattice artifacts in one-loop

4 Summary

Talk H. Perlt (Leipzig)

• • • • • • • • • • • • •

Talk is based on our recent paper M. Constantinou et al. PR D87 (2013) 096019

- Connection between "lattice world" and "real world": renormalization constants Z
- Must know them as accurate as possible
- Perturbative approach: complicated, slow convergence, mixing problems, ...
- Nonperturbative approach: widely used scheme is RI-MOM scheme
 - Simple implementation
 - Gauge fixing required.
- Simulations at finite lattice constant a → problem of lattices artifacts

Talk is based on our recent paper M. Constantinou et al. PR D87 (2013) 096019

- Connection between "lattice world" and "real world": renormalization constants *Z*
- Must know them as accurate as possible
- Perturbative approach: complicated, slow convergence, mixing problems, ...
- Nonperturbative approach: widely used scheme is RI-MOM scheme
 - Simple implementation
 - Gauge fixing required
- Simulations at finite lattice constant a → problem of lattices artifacts

Talk is based on our recent paper M. Constantinou et al. PR D87 (2013) 096019

- Connection between "lattice world" and "real world": renormalization constants *Z*
- Must know them as accurate as possible
- Perturbative approach: complicated, slow convergence, mixing problems, ...
- Nonperturbative approach: widely used scheme is RI-MOM scheme
 - Simple implementation
 - Gauge fixing required
- Simulations at finite lattice constant a → problem of lattices artifacts

Talk is based on our recent paper M. Constantinou et al. PR D87 (2013) 096019

- Connection between "lattice world" and "real world": renormalization constants *Z*
- Must know them as accurate as possible
- Perturbative approach: complicated, slow convergence, mixing problems, ...
- Nonperturbative approach: widely used scheme is RI-MOM scheme
 - Simple implementation
 - Gauge fixing required
- Simulations at finite lattice constant a → problem of lattices artifacts

Talk is based on our recent paper M. Constantinou et al. PR D87 (2013) 096019

- Connection between "lattice world" and "real world": renormalization constants *Z*
- Must know them as accurate as possible
- Perturbative approach: complicated, slow convergence, mixing problems, ...
- Nonperturbative approach: widely used scheme is RI-MOM scheme
 - Simple implementation
 - Gauge fixing required
- Simulations at finite lattice constant a → problem of lattices artifacts

Talk is based on our recent paper M. Constantinou et al. PR D87 (2013) 096019

- Connection between "lattice world" and "real world": renormalization constants *Z*
- Must know them as accurate as possible
- Perturbative approach: complicated, slow convergence, mixing problems, ...
- Nonperturbative approach: widely used scheme is RI-MOM scheme
 - Simple implementation
 - Gauge fixing required
- Simulations at finite lattice constant a → problem of lattices artifacts

Talk is based on our recent paper M. Constantinou et al. PR D87 (2013) 096019

- Connection between "lattice world" and "real world": renormalization constants *Z*
- Must know them as accurate as possible
- Perturbative approach: complicated, slow convergence, mixing problems, ...
- Nonperturbative approach: widely used scheme is RI-MOM scheme
 - Simple implementation
 - Gauge fixing required
- Simulations at finite lattice constant a → problem of lattices artifacts

Talk is based on our recent paper M. Constantinou et al. PR D87 (2013) 096019

- Connection between "lattice world" and "real world": renormalization constants *Z*
- Must know them as accurate as possible
- Perturbative approach: complicated, slow convergence, mixing problems, ...
- Nonperturbative approach: widely used scheme is RI-MOM scheme
 - Simple implementation
 - Gauge fixing required
- Simulations at finite lattice constant a → problem of lattices artifacts

$\mathcal{O}^{\mathrm{RGI}} = \Delta Z^{\mathcal{S}}(M) \mathcal{O}^{\mathcal{S}}(M) = \Delta Z^{\mathcal{S}}(M) Z^{\mathcal{S}}_{\mathrm{bare}}(M, a) \mathcal{O}_{\mathrm{bare}} = Z^{\mathrm{RGI}}(a) \mathcal{O}_{\mathrm{bare}}$

- S = RI' − MOM is not covariant for most operators → not suitable for computing anomalous dimensions (needed in Δ Z^S(M))
- Intermediate scheme $S: RI' MOM \rightarrow S \rightarrow RGI$
- $Z^{\text{RGI}}(a) = \Delta Z^{MOMgg}(M = \mu_p) Z^{MOMgg}_{\text{RI'}-\text{MOM}}(M = \mu_p) Z^{\text{RI'}-\text{MOM}}_{\text{bare}}(\mu_p, a)$
- ΔZ^{MOMgg} and $Z^{MOMgg}_{RI'-MOM}(M = \mu_p)$ computed in continuum PT
- $Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(\mu, a)$ is the nonperturbatively measured Z-factor
- In MC simulations $(a\mu)$ is not small \rightarrow lattice artifacts!
- Artifacts under control → determination of Z^{RGI} with better accuray!

Talk H. Perlt (Leipzig)

< D > < A > < B >

$$\mathcal{O}^{\mathrm{RGI}} = \Delta Z^{\mathcal{S}}(M) \mathcal{O}^{\mathcal{S}}(M) = \Delta Z^{\mathcal{S}}(M) Z^{\mathcal{S}}_{\mathrm{bare}}(M, a) \mathcal{O}_{\mathrm{bare}} = Z^{\mathrm{RGI}}(a) \mathcal{O}_{\mathrm{bare}}$$

- S = RI' MOM is not covariant for most operators → not suitable for computing anomalous dimensions (needed in Δ Z^S(M))
- Intermediate scheme $S: RI' MOM \rightarrow S \rightarrow RGI$

•
$$Z^{\text{RGI}}(a) = \Delta Z^{\widetilde{MOM}gg}(M = \mu_p) Z^{\widetilde{MOM}gg}_{\text{RI'}-\text{MOM}}(M = \mu_p) Z^{\text{RI'}-\text{MOM}}_{\text{bare}}(\mu_p, a)$$

- ΔZ^{MOMgg} and $Z^{MOMgg}_{RI'-MOM}(M = \mu_p)$ computed in continuum PT
- $Z_{\text{bare}}^{\text{RI'}-\text{MOM}}(\mu, a)$ is the nonperturbatively measured Z-factor
- In MC simulations $(a\mu)$ is not small \rightarrow lattice artifacts!
- Artifacts under control → determination of Z^{RGI} with better accuray!

Talk H. Perlt (Leipzig)

$$\mathcal{O}^{\mathrm{RGI}} = \Delta Z^{\mathcal{S}}(M) \mathcal{O}^{\mathcal{S}}(M) = \Delta Z^{\mathcal{S}}(M) Z^{\mathcal{S}}_{\mathrm{bare}}(M, a) \mathcal{O}_{\mathrm{bare}} = Z^{\mathrm{RGI}}(a) \mathcal{O}_{\mathrm{bare}}$$

- S = RI' MOM is not covariant for most operators → not suitable for computing anomalous dimensions (needed in Δ Z^S(M))
- Intermediate scheme \mathcal{S} : $RI' MOM \rightarrow \mathcal{S} \rightarrow RGI$

• $Z^{\text{RGI}}(a) = \Delta Z^{\widetilde{MOMgg}}(M = \mu_p) Z^{MOMgg}_{\text{RI'}-\text{MOM}}(M = \mu_p) Z^{\text{RI'}-\text{MOM}}_{\text{bare}}(\mu_p, a)$

- ΔZ^{MOMgg} and $Z^{MOMgg}_{RI'-MOM}(M = \mu_p)$ computed in continuum PT
- $Z_{\text{bare}}^{\text{RI'}-\text{MOM}}(\mu, a)$ is the nonperturbatively measured Z-factor
- In MC simulations $(a\mu)$ is not small \rightarrow lattice artifacts!
- Artifacts under control \rightarrow determination of Z^{RGI} with better accuray!

(日)

$$\mathcal{O}^{\mathrm{RGI}} = \Delta Z^{\mathcal{S}}(M) \mathcal{O}^{\mathcal{S}}(M) = \Delta Z^{\mathcal{S}}(M) Z^{\mathcal{S}}_{\mathrm{bare}}(M, a) \mathcal{O}_{\mathrm{bare}} = Z^{\mathrm{RGI}}(a) \mathcal{O}_{\mathrm{bare}}$$

- S = RI' MOM is not covariant for most operators → not suitable for computing anomalous dimensions (needed in Δ Z^S(M))
- Intermediate scheme \mathcal{S} : $RI' MOM \rightarrow \mathcal{S} \rightarrow RGI$

•
$$Z^{\text{RGI}}(a) = \Delta Z^{\widetilde{MOM}gg}(M = \mu_p) Z^{\widetilde{MOM}gg}_{\text{RI'}-\text{MOM}}(M = \mu_p) Z^{\text{RI'}-\text{MOM}}_{\text{bare}}(\mu_p, a)$$

- ΔZ^{MOMgg} and $Z^{MOMgg}_{RI'-MOM}(M = \mu_p)$ computed in continuum PT
- $Z_{\text{bare}}^{\text{RI'}-\text{MOM}}(\mu, a)$ is the nonperturbatively measured Z-factor
- In MC simulations $(a\mu)$ is not small \rightarrow lattice artifacts!
- Artifacts under control \rightarrow determination of Z^{RGI} with better accuray!

Talk H. Perlt (Leipzig)

・ロト ・同ト ・ヨト ・ヨト

$$\mathcal{O}^{\mathrm{RGI}} = \Delta Z^{\mathcal{S}}(M) \mathcal{O}^{\mathcal{S}}(M) = \Delta Z^{\mathcal{S}}(M) Z^{\mathcal{S}}_{\mathrm{bare}}(M, a) \mathcal{O}_{\mathrm{bare}} = Z^{\mathrm{RGI}}(a) \mathcal{O}_{\mathrm{bare}}$$

- S = RI' MOM is not covariant for most operators → not suitable for computing anomalous dimensions (needed in Δ Z^S(M))
- Intermediate scheme \mathcal{S} : $RI' MOM \rightarrow \mathcal{S} \rightarrow RGI$

•
$$Z^{\text{RGI}}(a) = \Delta Z^{\widetilde{MOM}gg}(M = \mu_p) Z^{\widetilde{MOM}gg}_{\text{RI'}-\text{MOM}}(M = \mu_p) Z^{\text{RI'}-\text{MOM}}_{\text{bare}}(\mu_p, a)$$

- $\Delta Z^{\widetilde{MOM}gg}$ and $Z^{MOMgg}_{RI'-MOM}(M = \mu_p)$ computed in continuum PT
- $Z_{\text{bare}}^{\text{RI'}-\text{MOM}}(\mu, a)$ is the nonperturbatively measured Z-factor
- In MC simulations $(a\mu)$ is not small \rightarrow lattice artifacts!
- Artifacts under control \rightarrow determination of Z^{RGI} with better accuray!

Talk H. Perlt (Leipzig)

・ロト ・同ト ・ヨト ・ヨト

$$\mathcal{O}^{\mathrm{RGI}} = \Delta Z^{\mathcal{S}}(M) \mathcal{O}^{\mathcal{S}}(M) = \Delta Z^{\mathcal{S}}(M) Z^{\mathcal{S}}_{\mathrm{bare}}(M, a) \mathcal{O}_{\mathrm{bare}} = Z^{\mathrm{RGI}}(a) \mathcal{O}_{\mathrm{bare}}$$

- S = RI' MOM is not covariant for most operators → not suitable for computing anomalous dimensions (needed in Δ Z^S(M))
- Intermediate scheme $\mathcal{S} \colon RI' MOM \to \mathcal{S} \to RGI$

•
$$Z^{\text{RGI}}(a) = \Delta Z^{\widetilde{MOM}gg}(M = \mu_p) Z^{\widetilde{MOM}gg}_{\text{RI'-MOM}}(M = \mu_p) Z^{\text{RI'-MOM}}_{\text{bare}}(\mu_p, a)$$

- $\Delta Z^{\widetilde{MOM}gg}$ and $Z^{\widetilde{MOM}gg}_{RI'-MOM}(M = \mu_p)$ computed in continuum PT
- $Z_{\text{bare}}^{\text{RI'}-\text{MOM}}(\mu, a)$ is the nonperturbatively measured Z-factor
- In MC simulations $(a\mu)$ is not small \rightarrow lattice artifacts!
- Artifacts under control → determination of Z^{RGI} with better accuray!

Talk H. Perlt (Leipzig)

・ロト ・同ト ・ヨト ・ヨト

$$\mathcal{O}^{\mathrm{RGI}} = \Delta Z^{\mathcal{S}}(M) \mathcal{O}^{\mathcal{S}}(M) = \Delta Z^{\mathcal{S}}(M) Z^{\mathcal{S}}_{\mathrm{bare}}(M, a) \mathcal{O}_{\mathrm{bare}} = Z^{\mathrm{RGI}}(a) \mathcal{O}_{\mathrm{bare}}$$

- S = RI' MOM is not covariant for most operators → not suitable for computing anomalous dimensions (needed in Δ Z^S(M))
- Intermediate scheme $\mathcal{S} \colon RI' MOM \to \mathcal{S} \to RGI$

•
$$Z^{\text{RGI}}(a) = \Delta Z^{\widetilde{MOM}gg}(M = \mu_p) Z^{\widetilde{MOM}gg}_{\text{RI'}-\text{MOM}}(M = \mu_p) Z^{\text{RI'}-\text{MOM}}_{\text{bare}}(\mu_p, a)$$

- $\Delta Z^{\widetilde{MOM}gg}$ and $Z^{\widetilde{MOM}gg}_{RI'-MOM}(M = \mu_p)$ computed in continuum PT
- $Z_{\text{bare}}^{\text{RI'}-\text{MOM}}(\mu, a)$ is the nonperturbatively measured Z-factor
- In MC simulations $(a\mu)$ is not small \rightarrow lattice artifacts!
- Artifacts under control → determination of Z^{RGI} with better accuray!

(日)

$$\mathcal{O}^{\mathrm{RGI}} = \Delta Z^{\mathcal{S}}(M) \mathcal{O}^{\mathcal{S}}(M) = \Delta Z^{\mathcal{S}}(M) Z^{\mathcal{S}}_{\mathrm{bare}}(M, a) \mathcal{O}_{\mathrm{bare}} = Z^{\mathrm{RGI}}(a) \mathcal{O}_{\mathrm{bare}}$$

- S = RI' MOM is not covariant for most operators → not suitable for computing anomalous dimensions (needed in Δ Z^S(M))
- Intermediate scheme $\mathcal{S} \colon RI' MOM \to \mathcal{S} \to RGI$

•
$$Z^{\text{RGI}}(a) = \Delta Z^{\widetilde{MOM}gg}(M = \mu_p) Z^{\widetilde{MOM}gg}_{\text{RI'-MOM}}(M = \mu_p) Z^{\text{RI'-MOM}}_{\text{bare}}(\mu_p, a)$$

- $\Delta Z^{\widetilde{MOM}gg}$ and $Z^{MOMgg}_{RI'-MOM}(M = \mu_p)$ computed in continuum PT
- $Z_{\text{bare}}^{\text{RI'}-\text{MOM}}(\mu, a)$ is the nonperturbatively measured Z-factor
- In MC simulations $(a\mu)$ is not small \rightarrow lattice artifacts!
- Artifacts under control → determination of Z^{RGI} with better accuray!

(ロ) (同) (ヨ) (ヨ) 三日

Following settings are used for the discussed examples

- Operators: \mathcal{O}^{S} , \mathcal{O}^{V}_{μ} , \mathcal{O}^{A}_{μ} , $\mathcal{O}^{T}_{\mu\nu}$, $\mathcal{O}_{\mathbf{v}_{2,a}}$, $\mathcal{O}_{\mathbf{v}_{2,b}}$
- Clover improved Wilson fermions + plaquette gauge action, $N_f = 2$
- Landau gauge
- β = (5.20, 5.25, 5.29, 5.40)
- $r_0 \Lambda_{\overline{\mathrm{MS}}} = (0.700, 0.789) \rightarrow g^{\mathcal{S}} \rightarrow \Delta Z^{\mathcal{S}}(M)$
- $r_0 = 0.501$ fm, $r_0/a = 6.050(\beta = 5.20), 6.603(\beta = 5.25), 7.004(\beta = 5.29), 8.285(\beta = 5.40)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Following settings are used for the discussed examples

- Operators: \mathcal{O}^{S} , \mathcal{O}^{V}_{μ} , \mathcal{O}^{A}_{μ} , $\mathcal{O}^{T}_{\mu\nu}$, $\mathcal{O}_{\mathbf{v}_{2,a}}$, $\mathcal{O}_{\mathbf{v}_{2,b}}$
- Clover improved Wilson fermions + plaquette gauge action, $N_f = 2$
- Landau gauge
- $\beta = (5.20, 5.25, 5.29, 5.40)$
- $r_0 \Lambda_{\overline{\mathrm{MS}}} = (0.700, 0.789) \rightarrow g^{\mathcal{S}} \rightarrow \Delta Z^{\mathcal{S}}(M)$
- $r_0 = 0.501$ fm, $r_0/a = 6.050(\beta = 5.20), 6.603(\beta = 5.25), 7.004(\beta = 5.29), 8.285(\beta = 5.40)$

Following settings are used for the discussed examples

- Operators: \mathcal{O}^{S} , \mathcal{O}^{V}_{μ} , \mathcal{O}^{A}_{μ} , $\mathcal{O}^{T}_{\mu\nu}$, $\mathcal{O}_{\mathbf{v}_{2,a}}$, $\mathcal{O}_{\mathbf{v}_{2,b}}$
- Clover improved Wilson fermions + plaquette gauge action, N_f = 2
- Landau gauge
- $\beta = (5.20, 5.25, 5.29, 5.40)$
- $r_0 \Lambda_{\overline{\mathrm{MS}}} = (0.700, 0.789) \rightarrow g^{\mathcal{S}} \rightarrow \Delta Z^{\mathcal{S}}(M)$
- $r_0 = 0.501$ fm, $r_0/a = 6.050(\beta = 5.20), 6.603(\beta = 5.25), 7.004(\beta = 5.29), 8.285(\beta = 5.40)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Following settings are used for the discussed examples

- Operators: \mathcal{O}^{S} , \mathcal{O}^{V}_{μ} , \mathcal{O}^{A}_{μ} , $\mathcal{O}^{T}_{\mu\nu}$, $\mathcal{O}_{\mathbf{v}_{2,a}}$, $\mathcal{O}_{\mathbf{v}_{2,b}}$
- Clover improved Wilson fermions + plaquette gauge action, $N_f = 2$
- Landau gauge
- β = (5.20, 5.25, 5.29, 5.40)
- $r_0 \Lambda_{\overline{\mathrm{MS}}} = (0.700, 0.789) \rightarrow g^{\mathcal{S}} \rightarrow \Delta Z^{\mathcal{S}}(M)$
- $r_0 = 0.501$ fm, $r_0/a = 6.050(\beta = 5.20), 6.603(\beta = 5.25), 7.004(\beta = 5.29), 8.285(\beta = 5.40)$

Following settings are used for the discussed examples

- Operators: \mathcal{O}^{S} , \mathcal{O}^{V}_{μ} , \mathcal{O}^{A}_{μ} , $\mathcal{O}^{T}_{\mu\nu}$, $\mathcal{O}_{\mathbf{v}_{2,a}}$, $\mathcal{O}_{\mathbf{v}_{2,b}}$
- Clover improved Wilson fermions + plaquette gauge action, $N_f = 2$
- Landau gauge
- β = (5.20, 5.25, 5.29, 5.40)
- $r_0 \Lambda_{\overline{\mathrm{MS}}} = (0.700, 0.789)
 ightarrow g^{\mathcal{S}}
 ightarrow \Delta Z^{\mathcal{S}}(M)$
- $r_0 = 0.501$ fm, $r_0/a = 6.050(\beta = 5.20), 6.603(\beta = 5.25), 7.004(\beta = 5.29), 8.285(\beta = 5.40)$

Following settings are used for the discussed examples

- Operators: \mathcal{O}^{S} , \mathcal{O}^{V}_{μ} , \mathcal{O}^{A}_{μ} , $\mathcal{O}^{T}_{\mu\nu}$, $\mathcal{O}_{\mathbf{v}_{2,a}}$, $\mathcal{O}_{\mathbf{v}_{2,b}}$
- Clover improved Wilson fermions + plaquette gauge action, $N_f = 2$
- Landau gauge
- β = (5.20, 5.25, 5.29, 5.40)
- $r_0 \Lambda_{\overline{\mathrm{MS}}} = (0.700, 0.789) \rightarrow g^{\mathcal{S}} \rightarrow \Delta Z^{\mathcal{S}}(M)$
- $r_0 = 0.501$ fm, $r_0/a = 6.050(\beta = 5.20), 6.603(\beta = 5.25), 7.004(\beta = 5.29), 8.285(\beta = 5.40)$

- In *M. Göckeler et al. PR D82 (2010) 114511* we proposed to subtract the complete one-loop lattice artifacts
- Very efficient, but being a purely numerical procedure rather involved
- Look for procedure which can be applied to more general cases eventually with "less" correction effect
- Cyprus group pioneered diagrammatic O(g²a²) approach (see e.g., M. Constantinou, V. Lubicz, H. Panagopoulos and F. Stylianou, JHEP 0910 (2009) 064)
- Results for local and one-link bilinears and different actions and general mass terms; higher derivative operators are possible (but also not very easy)

- In *M. Göckeler et al. PR D82 (2010) 114511* we proposed to subtract the complete one-loop lattice artifacts
- Very efficient, but being a purely numerical procedure rather involved
- Look for procedure which can be applied to more general cases eventually with "less" correction effect
- Cyprus group pioneered diagrammatic $O(g^2a^2)$ approach (see e.g., *M. Constantinou*, *V. Lubicz*, *H. Panagopoulos and F. Stylianou*, *JHEP* **0910** (2009) 064)
- Results for local and one-link bilinears and different actions and general mass terms; higher derivative operators are possible (but also not very easy)

- In *M. Göckeler et al. PR D82 (2010) 114511* we proposed to subtract the complete one-loop lattice artifacts
- Very efficient, but being a purely numerical procedure rather involved
- Look for procedure which can be applied to more general cases eventually with "less" correction effect
- Cyprus group pioneered diagrammatic $O(g^2a^2)$ approach (see e.g., *M. Constantinou*, *V. Lubicz*, *H. Panagopoulos and F. Stylianou*, *JHEP* **0910** (2009) 064)
- Results for local and one-link bilinears and different actions and general mass terms; higher derivative operators are possible (but also not very easy)

- In *M. Göckeler et al. PR D82 (2010) 114511* we proposed to subtract the complete one-loop lattice artifacts
- Very efficient, but being a purely numerical procedure rather involved
- Look for procedure which can be applied to more general cases eventually with "less" correction effect
- Cyprus group pioneered diagrammatic $O(g^2a^2)$ approach (see e.g., *M. Constantinou, V. Lubicz, H. Panagopoulos and F. Stylianou, JHEP* **0910** (2009) 064)
- Results for local and one-link bilinears and different actions and general mass terms; higher derivative operators are possible (but also not very easy)

- In *M. Göckeler et al. PR D82 (2010) 114511* we proposed to subtract the complete one-loop lattice artifacts
- Very efficient, but being a purely numerical procedure rather involved
- Look for procedure which can be applied to more general cases eventually with "less" correction effect
- Cyprus group pioneered diagrammatic $O(g^2a^2)$ approach (see e.g., *M. Constantinou, V. Lubicz, H. Panagopoulos and F. Stylianou, JHEP* **0910** (2009) 064)
- Results for local and one-link bilinears and different actions and general mass terms; higher derivative operators are possible (but also not very easy)

Example: scalar operator \mathcal{O}^{S}

$$Z^{S}(a,p) = 1 + \frac{g^{2}C_{F}}{16\pi^{2}} \left(-23.3099453215 + 3\log(a^{2}S_{2}) + (a^{2}S_{2})\left(1.6408851782248 - \frac{239}{240}\log(a^{2}S_{2}) + \frac{S_{4}}{(S_{2})^{2}}\left(1.9510436778 - \frac{101}{120}\log(a^{2}S_{2})\right)\right) \right)$$

$$\equiv 1 + \frac{g^{2}C_{F}}{16\pi^{2}}Z_{S}^{(1)} + g^{2}a^{2}Z_{S,1-loop}^{(a^{2})}$$

with $S_n = \sum_{\lambda=1}^4 p_{\lambda}^n$

$O^{S} - O(a^{2})$ artifacts

 $g^2 a^2 Z^{(a^2)}_{\rm S,1-loop}$ for a general momentum set (24³ × 48)

Talk H. Perlt (Leipzig)

・ 同 ト ・ ヨ ト ・ ヨ

Subtraction procedures

Following subtraction procedures have been investigated

$$Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p,a)_{\text{MC,sub,s}} \stackrel{(s)}{=} Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p,a)_{\text{MC}} - a^2 g_{\star}^2 Z_{1-\text{loop}}^{(a^2)}(p,a)$$
$$Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p,a)_{\text{MC}} \times \left(1 - a^2 g_{\star}^2 Z_{1-\text{loop}}^{(a^2)}(p,a)\right)$$

 g_* can be chosen to be either the bare lattice coupling g or the boosted coupling $g_{\rm B}$.

• • • • • • • • • • • • •

Subtraction procedures

Following subtraction procedures have been investigated

$$Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p,a)_{\text{MC,sub,s}} \stackrel{(s)}{=} Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p,a)_{\text{MC}} - a^2 g_{\star}^2 Z_{1-\text{loop}}^{(a^2)}(p,a)$$
$$Z_{\text{bare}}^{\text{RI}'-\text{MOM}}(p,a)_{\text{MC}} \times \left(1 - a^2 g_{\star}^2 Z_{1-\text{loop}}^{(a^2)}(p,a)\right)$$

 g_{\star} can be chosen to be either the bare lattice coupling g or the boosted coupling $g_{\rm B}$.

< D > < P > < E >

Effect of subtraction

For the scalar operator we get

Figure: $Z_{\rm S}$ and $Z_{{\rm S,sub,i}}$ as function of a^2p^2 .

Talk H. Perlt (Leipzig)

LPT improved Z factors

Fit of lattice artifacts

Parametrizing the remaining lattice artifacts

$$\left(Z^{\text{RGI}}(a) = \Delta Z^{\widetilde{MOM}gg}(p) Z^{\widetilde{MOM}gg}_{\text{RI'}-\text{MOM}}(p) Z^{\text{RI'}-\text{MOM}}_{\text{bare}}(p, a)_{\text{MC,sub}}\right)$$

$$Z_{\text{RI'}-\text{MOM}}^{S}(\rho)Z_{\text{bare}}^{\text{RI'}-\text{MOM}}(\rho, a)_{\text{MC,sub}} = \frac{Z^{\text{RGI}}(a)}{\Delta Z^{S}(\rho) \left[1 + b_{1} \left(g^{S}\right)^{8}\right]} + a^{2} \left(c_{1} S_{2} + c_{2} \frac{S_{4}}{S_{2}} + c_{3} \frac{S_{6}}{(S_{2})^{2}}\right) \\ + a^{4} \left(c_{4} \left(S_{2}\right)^{2} + c_{5} S_{4}\right) \\ + a^{6} \left(c_{6} \left(S_{2}\right)^{3} + c_{7} S_{4} S_{2} + c_{8} S_{6}\right)$$

 c_i fit the lattice artifacts ($S_n = \sum_i p_i^n$)

Talk H. Perlt (Leipzig)

- In order to avoid the region of breakdown of perturbation theory we fit for $p^2 \ge p_{min}^2 = 10 \, \text{GeV}^2$.
- We vary the type of subtraction ((s),(m)) and type of coupling (g, g_B)
- 3 We vary the number/kind of parameters (c_i) → strength of hypercubic lattice artifacts
- (a) Assuming that one-loop complete subtraction is "benchmark" \rightarrow compare the $O(a^2)$ subtraction results with these numbers
- Fitting routines: Nelder-Mead/differential evolution algorithms cross checked with MINUIT

- 4 同 6 4 日 6 4 日 6

- In order to avoid the region of breakdown of perturbation theory we fit for $p^2 \ge p_{min}^2 = 10 \,\text{GeV}^2$.
- We vary the type of subtraction ((s),(m)) and type of coupling (g, g_B)
- 3 We vary the number/kind of parameters (c_i) → strength of hypercubic lattice artifacts
- 3 Assuming that one-loop complete subtraction is "benchmark" \rightarrow compare the $O(a^2)$ subtraction results with these numbers
- Fitting routines: Nelder-Mead/differential evolution algorithms cross checked with MINUIT

- In order to avoid the region of breakdown of perturbation theory we fit for $p^2 \ge p_{min}^2 = 10 \,\text{GeV}^2$.
- We vary the type of subtraction ((s),(m)) and type of coupling (g, g_B)
- Solution We vary the number/kind of parameters (c_i) → strength of hypercubic lattice artifacts
- 3 Assuming that one-loop complete subtraction is "benchmark" \rightarrow compare the $O(a^2)$ subtraction results with these numbers
- Fitting routines: Nelder-Mead/differential evolution algorithms cross checked with MINUIT

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- In order to avoid the region of breakdown of perturbation theory we fit for $p^2 \ge p_{min}^2 = 10 \text{ GeV}^2$.
- We vary the type of subtraction ((s),(m)) and type of coupling (g, g_B)
- Solution We vary the number/kind of parameters (c_i) → strength of hypercubic lattice artifacts
- Assuming that one-loop complete subtraction is "benchmark" \rightarrow compare the $O(a^2)$ subtraction results with these numbers
- Fitting routines: Nelder-Mead/differential evolution algorithms cross checked with MINUIT

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- In order to avoid the region of breakdown of perturbation theory we fit for $p^2 \ge p_{min}^2 = 10 \, \text{GeV}^2$.
- We vary the type of subtraction ((s),(m)) and type of coupling (g, g_B)
- Solution We vary the number/kind of parameters (c_i) → strength of hypercubic lattice artifacts
- Assuming that one-loop complete subtraction is "benchmark" \rightarrow compare the $O(a^2)$ subtraction results with these numbers
- Fitting routines: Nelder-Mead/differential evolution algorithms cross checked with MINUIT

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Results, \mathcal{O}^{S} as example: subtraction type

1: complete subtraction with g_B , **2**: (s) with g_B , **3**: (m) with g_B , **4**: (s) with g, **5**: (m) with gFit using all c_i , Shaded area: 1% deviation from **1**.

Talk H. Perlt (Leipzig)

LPT improved Z factors

Subtraction of $O(a^2)$ lattice artifacts in one-loop

Results, \mathcal{O}^S as example: parameter type

1: complete subtraction, **2**: all c_i , **3**: O(4)-invariants, **4**: a^2 , a^4 - invariants, **5**: a^4 , a^6 - invariants Fit for (s) and g_B , Shaded area: 1% deviation from **1**.

Talk H. Perlt (Leipzig)

LPT improved Z factors

Results, \mathcal{O}^S as example: final comparison

 $Z_S^{\rm RGI}$ at $r_0 \Lambda_{\overline{\rm MS}} = 0.700$

< A >

Results for a^2 subtraction

Op.	$r_0 \Lambda_{\overline{\rm MS}}$	$Z^{\text{RGI}} _{\beta=5.20}$	$Z^{\text{RGI}} _{\beta=5.25}$	$Z^{\text{RGI}} _{\beta=5.29}$	$Z^{\text{RGI}} _{\beta=5.40}$
OS	0.700	0.4530(34)	0.4475(33)	0.4451(32)	0.4414(30)
	0.789	0.4717(44)	0.4661(65)	0.4632(54)	0.4585(27)
OV	0.700	0.7163(26)	0.7253(26)	0.7308(25)	0.7451(24)
	0.789	0.7238(72)	0.7319(94)	0.7365(99)	0.7519(50)
OA	0.700	0.7460(41)	0.7543(40)	0.7590(39)	0.7731(37)
	0.789	0.7585(46)	0.7634(77)	0.7666(81)	0.7805(30)
\mathcal{O}^T	0.700	0.8906(43)	0.9036(42)	0.9108(41)	0.9319(39)
	0.789	0.8946(85)	0.9041(111)	0.9075(120)	0.9316(49)
0 ^v 2,a	0.700	1.4914(55)	1.5131(55)	1.5266(54)	1.5660(53)
	0.789	1.4635(108)	1.4776(112)	1.4926(90)	1.5397(58)
0 ^v 2,b	0.700	1.5061(37)	1.5218(37)	1.5329(36)	1.5534(35)
	0.789	1.4601(151)	1.4727(206)	1.4863(165)	1.5115(140)

Summary

Described subtraction procedures for getting rid of lattice artifacts

- Numerical procedure for subtraction of all lattice artifacts in one-loop very efficient
- Not suited for more complicated operators and/or actions
- Fit procedure must be performed and adjusted for each operator individually
- Used data do not favour strongly an unique choice of g, subtraction type or parameter set c_i - compared to the complete one-loop subtraction results
- "External" arguments from boosted perturbation theory ($\rightarrow g_B$), simplicity considerations ($\rightarrow (s)$) and data momenta ($\rightarrow \text{ all } c_i$) served as guide lines

• Z^{RGI} from *a*² subtraction differ at most by 2% from the corresponding results obtained from the complete one-loop subtraction

Summary

- Described subtraction procedures for getting rid of lattice artifacts
- Numerical procedure for subtraction of all lattice artifacts in one-loop very efficient
- Not suited for more complicated operators and/or actions
- Fit procedure must be performed and adjusted for each operator individually
- Used data do not favour strongly an unique choice of g, subtraction type or parameter set c_i - compared to the complete one-loop subtraction results
- "External" arguments from boosted perturbation theory ($\rightarrow g_B$), simplicity considerations ($\rightarrow (s)$) and data momenta ($\rightarrow \text{ all } c_i$) served as guide lines

• Z^{RGI} from *a*² subtraction differ at most by 2% from the corresponding results obtained from the complete one-loop subtraction

Summary

- Described subtraction procedures for getting rid of lattice artifacts
- Numerical procedure for subtraction of all lattice artifacts in one-loop very efficient
- Not suited for more complicated operators and/or actions
- Fit procedure must be performed and adjusted for each operator individually
- Used data do not favour strongly an unique choice of g, subtraction type or parameter set c_i - compared to the complete one-loop subtraction results
- "External" arguments from boosted perturbation theory ($\rightarrow g_B$), simplicity considerations ($\rightarrow (s)$) and data momenta ($\rightarrow \text{ all } c_i$) served as guide lines

• Z^{RGI} from *a*² subtraction differ at most by 2% from the corresponding results obtained from the complete one-loop subtraction

Summary

- Described subtraction procedures for getting rid of lattice artifacts
- Numerical procedure for subtraction of all lattice artifacts in one-loop very efficient
- Not suited for more complicated operators and/or actions
- Fit procedure must be performed and adjusted for each operator individually
- Used data do not favour strongly an unique choice of g, subtraction type or parameter set c_i - compared to the complete one-loop subtraction results
- "External" arguments from boosted perturbation theory ($\rightarrow g_B$), simplicity considerations ($\rightarrow (s)$) and data momenta ($\rightarrow \text{ all } c_i$) served as guide lines

• Z^{RGI} from *a*² subtraction differ at most by 2% from the corresponding results obtained from the complete one-loop subtraction

Summary

- Described subtraction procedures for getting rid of lattice artifacts
- Numerical procedure for subtraction of all lattice artifacts in one-loop very efficient
- Not suited for more complicated operators and/or actions
- Fit procedure must be performed and adjusted for each operator individually
- Used data do not favour strongly an unique choice of g, subtraction type or parameter set c_i - compared to the complete one-loop subtraction results
- "External" arguments from boosted perturbation theory ($\rightarrow g_B$), simplicity considerations ($\rightarrow (s)$) and data momenta ($\rightarrow \text{ all } c_i$) served as guide lines

• Z^{RGI} from *a*² subtraction differ at most by 2% from the corresponding results obtained from the complete one-loop subtraction

Summary

- Described subtraction procedures for getting rid of lattice artifacts
- Numerical procedure for subtraction of all lattice artifacts in one-loop very efficient
- Not suited for more complicated operators and/or actions
- Fit procedure must be performed and adjusted for each operator individually
- Used data do not favour strongly an unique choice of g, subtraction type or parameter set c_i - compared to the complete one-loop subtraction results
- "External" arguments from boosted perturbation theory ($\rightarrow g_B$), simplicity considerations (\rightarrow (*s*)) and data momenta (\rightarrow all *c_i*) served as guide lines

• Z^{RGI} from a² subtraction differ at most by 2% from the corresponding results obtained from the complete one-loop subtraction

Summary

- Described subtraction procedures for getting rid of lattice artifacts
- Numerical procedure for subtraction of all lattice artifacts in one-loop very efficient
- Not suited for more complicated operators and/or actions
- Fit procedure must be performed and adjusted for each operator individually
- Used data do not favour strongly an unique choice of g, subtraction type or parameter set c_i - compared to the complete one-loop subtraction results
- "External" arguments from boosted perturbation theory ($\rightarrow g_B$), simplicity considerations (\rightarrow (s)) and data momenta (\rightarrow all c_i) served as guide lines
- Z^{RGI} from a² subtraction differ at most by 2% from the corresponding results obtained from the complete one-loop subtraction

Acknowledgements

We thank:

SFB/TR55 (Hadron Physics from Lattice QCD)

EU grant 283286 (HadronPhysics3)

Cyprus Research Promotion Foundation under Contract No. TECHNOLOGY/ Θ E Π I Σ / 0311(BE)/16