Hadron spectra and leptonic decay constants with overlap fermions on HISQ gauge configurations

Nilmani Mathur

Department of Theoretical Physics Tata Institute of Fundamental Research, India

Collaborators : S. Basak, S. Datta, A. Lytle, P. Majumdar, M. Padmanath

(Indian Lattice Gauge Theory Initiative)

Lattice 2013, Mainz, Germany

Overlap Fermions

- Some desirable features:
 - No O(a) error.
 - Multi-mass algorithm (more than 20 masses
 8-12% overhead
 - Renormalization is presumed to be relatively simple (e.g. with chiral Ward identity).
- Undesirable feature: -- Cost

Overlap fermions on 2+1+1 Flavors HISQ Configurations

Lattices used for this study : HISQ gauge configurations from MILC $32^3 \times 96$, a = 0.089 fm, m_l/m_s = 1/5, m_{\pi}L = 4.5,m_{\pi} = 312 MeV $48^3 \times 144$, a = 0.058 fm, m_l/m_s = 1/5, m_{\pi}L = 4.51,m_{\pi} = 319 MeV PHYSICAL REVIEW D 87, 054505 (2013) (MILC)

- HYP smearing on gauge fields
- Both point source and coulomb gauge fixed wall source are used
- No of eigenvectors projected : 350 (a = 0.089 fm)

and 75 (a = 0.058 fm)

> Preliminary results on our ongoing study will be reported here

Rest mass Vs Kinetic mass

Charm mass is tuned by meson kinetic mass and not from rest massa la FermiLab formulation

El-khadra et al, PRD55, 3933(1997)

Expanding the energy momentum relation in powers of *pa*

$$E^2 = M_1^2 + \frac{M_1}{M_2} \mathbf{p}^2 + \cdots$$

 $= M_1^2 + c^2 p^2$

Rest mass : $M_1 = E(\mathbf{0})$

Kinetic mass : $M_2 = M_1/C^2$

Dispersion relation (at charm mass)

Finite momentum wall source is used to project to particular momentum state which reduce errorbars substantially.

Lattice spacings and tuning of charm and strange masses

Lattice spacings are calculated by Omega(sss) mass = 1672 GeV

48³ x 144 : 0.0582(5) fm 32³ x 96 : 0.0877(10) fm which are quite consistent with lattice spacings determined by MILC

Strange mass is tuned by setting pseudoscalar $\underline{s}s$ mass at 685 MeV $m_{s}a = 0.048 (a = 0.0888 \text{ fm}) = 0.028 (a = 0.0582 \text{ fm})$ Charm mass is tuned by $\frac{1}{4} (m_{\eta_{c}} + 3m_{J,\lambda\mu})$ $m_{c}a = 0.425 - 0.43 (a = 0.0888 \text{ fm}), = 0.29 (a = 0.0582 \text{ fm})$ $m_{c}a = 0.425 - 0.43 (a = 0.0888 \text{ fm}), = 0.29 (a = 0.0582 \text{ fm})$ $m_{c}a = 0.425 - 0.43 (a = 0.0888 \text{ fm}), = 0.29 (a = 0.0582 \text{ fm})$ $m_{c}a = 0.425 - 0.43 (a = 0.0888 \text{ fm}), = 0.29 (a = 0.0582 \text{ fm})$ $m_{c}a = 0.425 - 0.43 (a = 0.0888 \text{ fm}), = 0.29 (a = 0.0582 \text{ fm})$

Lattice spacings and tuning of charm and strange masses

Lattice spacings are calculated by Omega(sss) mass = 1672 GeV

48³ x 144 : 0.0582(5) fm 32³ x 96 : 0.0877(10) fm which are quite consistent with lattice spacings determined by MILC

Strange mass is tuned by setting pseudoscalar $\underline{s}s$ mass at 685 MeV $m_{s}a = 0.048 (a = 0.0888 \text{ fm}) = 0.028 (a = 0.0582 \text{ fm})$ Charm mass is tuned by $\frac{1}{4} (m_{\eta_{c}} + 3m_{J,\lambda\mu})$ $m_{c}a = 0.425 - 0.43 (a = 0.0888 \text{ fm}), = 0.29 (a = 0.0582 \text{ fm})$ $m_{c}a = 0.425 - 0.43 (a = 0.0888 \text{ fm}), = 0.29 (a = 0.0582 \text{ fm})$ $m_{c}a = 0.425 - 0.43 (a = 0.0888 \text{ fm}), = 0.29 (a = 0.0582 \text{ fm})$ $m_{c}a = 0.425 - 0.43 (a = 0.0888 \text{ fm}), = 0.29 (a = 0.0582 \text{ fm})$ $m_{c}a = 0.425 - 0.43 (a = 0.0888 \text{ fm}), = 0.29 (a = 0.0582 \text{ fm})$

Pseudo-scalar eff. masses

Pseudoscalar meson mass

Pseudoscalar meson mass

Effective mass for HFS (48³ x 144, a= 0.0582fm)

Meson mass splittings

Singly and doubly-charmed Ω baryons

 $(48^3 \times 144, a = 0.0582 \text{fm})$

Triply-charmed $\Omega_{ccc}(3/2^+)$ baryon

Decay constants

$$\flat \quad \langle 0 | \bar{c}(0) \gamma_{\mu} \gamma_5 q(0) | D_q(p) \rangle = f_{D_q} p_{\mu}$$

$$\flat \quad \langle 0|\bar{c}(0)\gamma_{\mu}q(0)|D_{q}^{*}(p,\lambda)\rangle = f_{D_{q}^{*}}m_{D_{q}^{*}}e_{\mu}^{\lambda}$$

From PCAC :

$$M_{\rm PS}^2 f_{\rm PS} = (\mu_1 + \mu_2) |\langle 0|P^1(0)|{\rm PS}\rangle|$$

 $\mu_{1,2}$ are the bare quark masses $Z_m Z_P = 1$

$$f_{D_s} = \frac{(m_c + m_s)}{m_{D_s}^2} \sqrt{2A m_{D_s}}$$
$$x \equiv |\langle 0|P|D_s \rangle|, \ \overline{2A} = x^2/m_{D_s}$$

Bothi) point-pointpropagatorsandii) wall-pointwith wall-wallpropagatorswere utilized

$$\langle 0|\bar{c}(0)\gamma_{\mu}\gamma_{5}q(0)|D_{q}(p)\rangle = f_{D_{q}}p_{\mu}$$

$$\langle 0|\bar{c}(0)\gamma_{\mu}q(0)|D_q^*(p,\lambda)\rangle = f_{D_q^*}m_{D_q^*}e_{\mu}^{\lambda}$$

$$m_{D_s} f_{D_s} = Z_A |\langle 0|A4|D_s \rangle |$$

$$Z_A = \frac{m_{D_s} f_{D_s}}{\sqrt{2A m_{D_s}}}$$

It is better to calculate the ratio
$$\frac{f_{D^*s}}{f_{Ds}}$$

where the effect of various normalization factors and mixed action effect will be smaller

Summary and outlook

- ✓ Overlap valence on 2+1+1 flavour HISQ configurations is a promising approach to do lattice QCD simulation with light, strange and charm quark together in same lattice formulation.
- ✓ However, we found that the dispersion relation with overlap fermions, at charm mass, is not better than that of clover fermions found in literature.
- Kinetic masses of mesons are used instead of pole masses to tune charm quark mass. Dispersion relation improved at kinetic masses.
- Preliminary results are encouraging, particularly, the hyperfine splitting for charmonium. We are studying meson and baryon spectra in details.
- ✓ We are also studying heavy-light decay constants. Necessary renormalization constant calculations are ongoing.
- We also need to calculate the mixing parameter for this mix action approach.

Acknowledgement :

- Computations : ILGTI-TIFR BG/P
- Thanks to MILC collaboration (particularly, S. Gottlieb) for giving access to HISQ configurations
- > Overlap issues : χ QCD collaboration

Mixed action effects

Mixed action

For chirally symmetric valence, it is like partial quenching with one extra parameter in valence-sea mass (Chen, O'Connell, Walker-Loud, hep-lat/0611003, arXiv:0706.0035)

$$m_{v_1v_2}^2 = B_0(m_{v_1} + m_{v_2}),$$

$$\tilde{m}_{vs}^2 = B_0(m_v + m_s) + a^2 \Delta_{\text{Mix}},$$

$$\tilde{m}_{s_1s_2}^2 = B_0(m_{s_1} + m_{s_2}) + a^2 \Delta_{sea},$$

Mixed action effect for overlap on domain wall gauge configurations was found to be small... M. Lujan et. al., arXiv:1204.6256v1