Excited Spectroscopy of Mesons Containing Charm Quarks From Lattice QCD

Graham Moir School of Mathematics, Trinity College Dublin

Lattice 2013, Mainz, 31/7/2013

(For the Hadron Spectrum Collaboration)

Outline

- Experimental motivation
- Ensemble details
- HadSpec recipe for spectroscopy
- Results
 - Charmonium spectrum
 - ullet D and D_s spectra
 - Hybrid mesons
 - $D\pi$ scattering (I=3/2) Preliminary

2003 - A Modern Day 'November Revolution'

Pre 2003 - charm spectroscopy well explained via quark models - $^{2S+1}L_J$

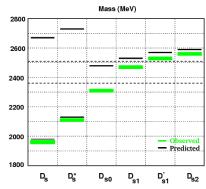
New narrow charmonium-like structures are observed by BABAR and Belle above the open charm threshold ("X,Y,Z's")

Too many states for the ${}^{2S+1}L_J$ pattern to explain \Rightarrow renewed theoretical interest . . . what could the states be?

- X(3872): close to the $D\bar{D}^*$ threshold \Rightarrow a molecular meson?
- X(4260): a 1⁻⁻ hybrid meson?
- $X(4430)^{\pm}$: a charged entity \Rightarrow can't be $c\bar{c}$, maybe a tetra-quark?

Still no clear picture has emerged

2003 - Surprises In The Open Charm Sector


• BABAR observes the $D_{s0}^*(2317)^{\pm}$ state

[B.Aubert et al. [BABAR Collaboration], Phys. Rev. Lett. 90 (2003) 242001]

• CLEO confirms the BABAR discovery and observes a further resonance $D_{s1}(2460)^{\pm}$

[D.Besson et al. [CLEO Collaboration], Phys. Rev. D 68 (2003) 032002]

 Significantly Lighter and narrower than quark model predictions

[F. Close and E. Swanson, Phys. Rev. D72 (2005) 094004]

Ensemble Details

Calculations performed on lattices generated by the **Hadron Spectrum Collaboration**

- Dynamical $N_f = 2 + 1$
- Anisotropic $\xi = a_s/a_t \sim 3.5$
- Scale set via M_{Ω} : $a_s = 0.1227(8)$ fm, $a_t^{-1} = 5.67(4)$ GeV
- Two volumes: $16^3 \times 128$ and $24^3 \times 128$
- Clover fermions: On-shell O(a) improvement
- Spatial links are stout smeared
- Quark fields are distilled

Ensemble Details

Calculations performed on lattices generated by the **Hadron Spectrum**Collaboration

- Dynamical $N_f = 2 + 1$
- Anisotropic $\xi = a_s/a_t \sim 3.5$
- Scale set via M_{Ω} : $a_s = 0.1227(8)$ fm, $a_t^{-1} = 5.67(4)$ GeV
- Two volumes: $16^3 \times 128$ and $24^3 \times 128$
- Clover fermions: On-shell O(a) improvement
- Spatial links are stout smeared
- Quark fields are distilled

Caveat: Pion mass $\sim 391 \text{ MeV}$

HadSpec Recipe For Meson Spectroscopy I

Recipe for the calculation of **extensive** spectra:

Use basis of local and non-local operators from distilled fields

$$\bar{\Psi}(x)\Gamma D_i D_j ... \Psi(x)$$

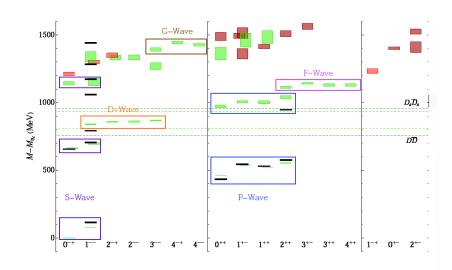
We include:

- \bullet All combinations of $\gamma\text{-matricies}$ and derivatives up to three derivatives
- Operators $\sim F_{\mu\nu} \Rightarrow$ access gluonic degrees of freedom
- Operators that let us explore all $J^{P(C)}$ up to J=4
- Build a correlation matrix from two-point correlation functions

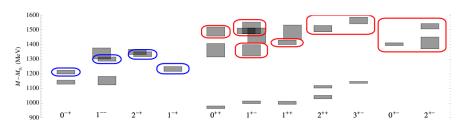
$$C_{ij} = \langle 0 | \mathcal{O}_i \mathcal{O}_j^{\dagger} | 0 \rangle = \sum_{n} \frac{Z_i^n Z_j^{n\dagger}}{2E_n} e^{-E_n t}$$

HadSpec Recipe for Meson Spectroscopy II

Use a variational method - solve the generalised eigenvalue equation

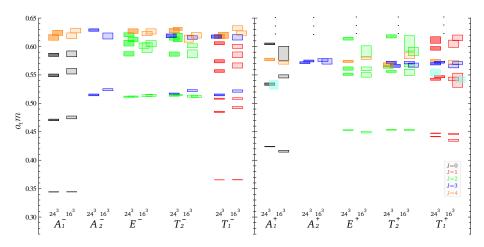

$$C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$$

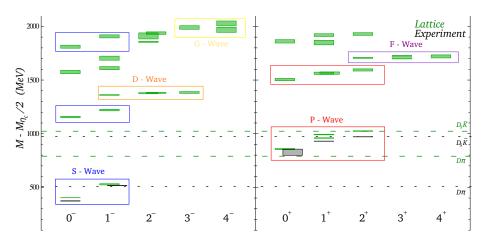
This gives:

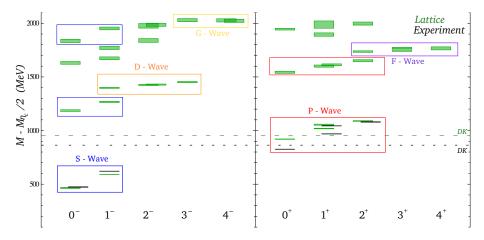

- Eigenvalues: $\lambda^{(n)}(t) \sim e^{-E_n t} \left[1 + O(e^{-\Delta E t}) \right]$ principle correlator
- **Eigenvectors**: Relate to overlaps $Z_i^{(n)} = \sqrt{2E_n}e^{E_nt_0/2}v_j^{(n)\dagger}C_{ji}(t_0)$
- Use overlaps to assign each extracted state a continuum spin
 - Operators of definite J^{PC} were constructed in step 1 and subduced into the relevant irrep
 - A subduced operator carries a memory of the continuum spin J, from which it was subduced - it overlaps predominantly with states of this J

Graham Moir (TCD) Charm Physics

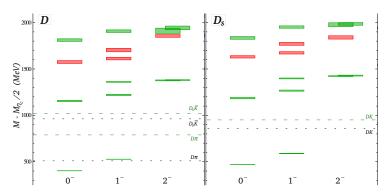
Results - Hidden Charm Sector

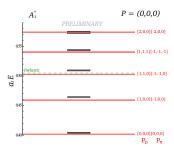

• Large overlap with operators $\mathcal{O} \sim F_{\mu\nu}$

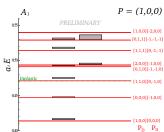


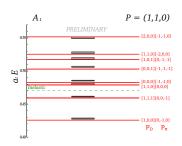

- Lightest hybrid supermultiplet: $(c\bar{c} \text{ in S-wave}) \otimes (J_g^{PC} = 1^{+-}) \Rightarrow [(0,1,2)^{-+},1^{--}]$
- Excited hybrid supermultiplet: $(c\bar{c} \text{ in P-wave}) \otimes (J_g^{PC} = 1^{+-})$ $\Rightarrow [0^{+-}, (1^{+-})^3, (2^{+-})^2, 3^{+-}, (0, 1, 2)^{++}]$

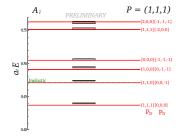
Graham Moir (TCD)


Results - Open Charm Sector

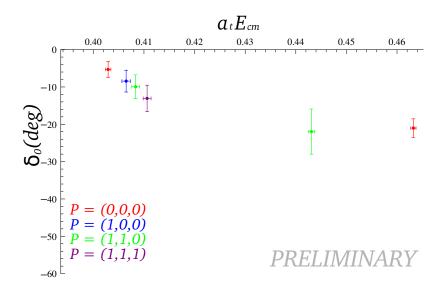

ullet Large overlap with operators $\mathcal{O} \sim F_{\mu
u}$




• Lightest hybrid supermultiplet - same pattern and scale as in Charmonium and Light meson sectors [J. Dudek, arXiv:1106.5515]


Results - $D\pi$ Scattering

$D\pi$ Multi-particle Spectra - Preliminary



$D\pi$ Scattering Phase Shift for I=0 - Preliminary

Conclusions

- Computed charmonium spectrum observe exotic states
- Computed D and D_s spectra multi-hadron effects may be important to understand the $D_{s0}^*(2317)^{\pm}$ and $D_{s1}(2460)^{\pm}$ states
- Spectra generally well explained by quark model
- Observe extra hybrid states
- Early stages of $D\pi$ Scattering (I = 3/2)