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1) Topological θ-term and sign problem.

Aim: SU(3) gauge theory phase diagram in the T − θ plane.
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Does Tc depend on θ? Is it growing or decreasing?
- PNJL model [Mizher, Fraga, Sakai, Kouno et al.]
- semiclassical approximations [Anber, Unsal, Poppitz and Schaefer]
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1) Topological θ-term and sign problem.

We consider the following continuum action in euclidean metric:

S = SYM + Sθ

The Yang-Mills term

SYM = −1
4

∫
d4x F a

µν(x)F a
µν(x)

and the topological θ-term

Sθ = −iθ
g2
0

64π2

∫
d4x εµνρσF a

µν(x)F a
ρσ(x) ≡ −iθ

∫
d4x q(x) ≡ −iθQ[A]

But it is complex! Bad news... sign problem!
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1) Topological θ-term and sign problem.

Analytic continuation
Via an imaginary θ = iθI term we can ”solve” the sign problem.
[Azcoiti et al., PRL 2002; Alles and Papa, PRD 2008; Horsley et al.,
arxiv:0808.1428 [hep-lat]; Panagopoulos and Vicari, JHEP 2011]
Analyticity is supported by the current knowledge of the vacuum
free energy derivatives with respect to θ evaluated at θ = 0.
[Alles, D’Elia and Di Giacomo, PRD 2005; Vicari and Panagopoulos, Physics
Reports 2008]

Reweighting
From simulation at θ = 0, if we measure the topological charge Q
of each configuration, we can reweight towards nonzero θ:

〈O〉θ =
〈O e−iθQ〉0
〈e−iθQ〉0
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1) Topological θ-term and sign problem.

The lattice partition function is:

Z (T , θ) =

∫
D[U]e−SL

YM [U]−θLQL[U]

SL
YM = Standard Wilson Plaquette Action

QL[U] =
−1
29π2

Lattice∑

n

±4∑

µνρσ=±1

ε̃µνρσTr (Πµν(n)Πρσ(n))

Due to a finite multiplicative renormalization QL is related to the
integer valued Q by :

QL = Z (β)Q + O(a2)

[Campostrini, Di Giacomo and Panagopoulos, Phys Lett B 1988]
So the θ-term is also

Sθ ≡ −θLQL = −θLZ (β)Q = −θIQ
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2) Tc(θ) for SU(3): analytic continuation & reweighting.

Polyakov Loop → order parameter for deconfinement even at θ 6= 0.

χL(β, θL) = Vs

(〈
|L|2
〉
β,θL
− 〈|L|〉2β,θL

)

Determination of βc on 243×6 lattice.

5.86 5.88 5.9 5.92 5.94 5.96 5.98 6

β

0

0.04

0.08

0.12

θ
L
 = 0

θ
L
 = 15

θ
L
 = 20

L and χL data and β-reweighting.

Several lattice spacings in or-
der to approach the conti-
nuum limit:

a ' 1/(4Tc(0)), 1/(6Tc(0)),

1/(8Tc(0)) and 1/(10Tc(0)).

Lattices aspect ratio = 4.
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2) Tc(θ) for SU(3): analytic continuation & reweighting.

Tc(θ)/Tc(0)'1+Rθθ2

RNt=4
θ = 0.0299(7)
χ2/d .o.f . ∼ 0.3

RNt=6
θ = 0.0235(5)
χ2/d .o.f . ∼ 1.6

RNt=8
θ = 0.0204(5)
χ2/d .o.f . ∼ 0.7

RNt=10
θ = 0.0200(5)
χ2/d .o.f . ∼ 1.0
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Tc increases for imaginary coupling then,
by analytic continuation, it decreases for real θ.
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2) Tc(θ) for SU(3): analytic continuation & reweighting.

Assuming quadratic finite lattice spacing corrections to Rθ:
RNt
θ = Rcont

θ + c/N2
t

we can extrapolate to the continuum limit to get
Rcont
θ = 0.0178(5) with χ2/d .o.f . ∼ 0.6
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2) Tc(θ) for SU(3): analytic continuation & reweighting.

How does the phase diagram looks like?

Assumption for the sketched phase diagram:
- critical line depending on θ2

- periodicity in θ → cusps
- critical point at θ = π and T = 0 connected with the cusps10
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FIG. 12: Phase diagram of QCD in presence of an imaginary
baryon chemical potential µB , as it emerges from symmetry
considerations and numerical simulations. The vertical lines
are the Roberge-Weiss transition lines present in the high-T
phase of the theory, the dashed lines represents the deconfin-
ing transition and TRW indicates the temperature at which
the Roberge-Weiss lines terminate (see text).

of k, for which the effective potential of the Polyakov loop
has two equivalent, degenerate minima, corresponding to
adiacent center sectors [51].

The RW transitions and their connection with the de-
confining, chiral restoring (pseudo)-critical line Tc(θB)
have been widely studied both by numerical lattice simu-
lations and by effective model computations[52–67]. The
resulting diagram in the T -θB plane is sketched in Fig. 12.

The RW transition lines are first order and corre-
spond to a discontinous jump in the order parameter, the
Polyakov loop. The order of their endpoint, instead, de-
pends on the quark mass spectrum: evidence from lattice
studies collected up to now is that, both for the two-flavor
and the three-flavor theory, the endpoint is second order
for intermediate quark masses and first order in the limit
of large or small quark masses [53–55]. In the former case
the universality class is that of the 3D Ising model, since
the relevant symmetry is Z2; in the latter, the endpoint
is actually a triple point, with two further first order
lines departing from it, which can be identified with part
of the (pseudo)critical lines Tc(θB) corresponding to chi-
ral symmetry restoration and deconfinement. The line
Tc(θB) is therefore a multibranched function itself, with
cusps which can be conjectured to coincide with the RW
endpoints, as depicted in Fig. 12: that is also consistent
with available numerical evidence.

B. Phase diagram in the T -θ plane

In presence of a real θ term, gauge configurations are
weighted, in the path integral representation of the par-
tition function, by a factor exp(iθQ). The topological
charge Q is globally integer for finite action configura-
tions, hence the partition function and the free energy
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FIG. 13: Conjectured phase diagram of the pure gauge
SU(N) Yang-Mills theories in the T -θ plane. The vertical
lines are the first order transition lines expected in the low-
T phase of the theory, the dashed lines corresponds to the
deconfining transition.

must periodic in θ, with period 2π.
However, if one searches for a θ dependence which stays

non-zero at the leading order in 1/N , as required by the
solution to the axial U(1) problem, one needs that the
free energy be a function of θ/N , instead of θ, otherwise θ
dependence would be suppressed exponentially in N [1].

Also in this case, the only possible way to reconcile
periodicity in θ and dependence on θ/N is to admit that
the free energy density f(θ) is a multibranched function
of θ [26–28], scaling in the large N limit as follows [26, 28]:

f(θ) = N2mink h

(
θ + 2πk

N

)
(19)

where k runs over all relative integers. For each value
of θ the system choices the branch which minimizes the
free energy. The function h can be chosen so as to have
its minimum in zero [68], so that the branch relevant to
θ ∼ 0 corresponds to k = 0. Moreover, the invariance
under CP , present at θ = 0, imposes that h is an even
function of θ.

A shift θ → θ + 2π corresponds to a passage from one
branch to the other, which, according to the large N scal-
ing in Eq. (19), must happen discontinously, in points
where the free energies of the two adiancent branches
cross with different (opposite) derivatives, i.e. through
a first order transition. For symmetry reasons that
happens for θ = ±π, or odd multiples of such values.
CP symmetry, which is exact in correspondence of such
points, is broken spontaneously by the choice of one of
the two equivalent branches, which are not invariant un-
der CP , but instead exchanged into each other. CP is
of course exact also for θ = 0 and for integer multiples of
2π, but there no spontaneous breaking happens.

The scenario depicted above is true only for sufficiently
low temperatures. Indeed, in the opposite limit of high
T , the instanton gas approximation must set in, which
predicts a smooth, periodic behavior in θ, but with an
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of k, for which the effective potential of the Polyakov loop
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must periodic in θ, with period 2π.
However, if one searches for a θ dependence which stays

non-zero at the leading order in 1/N , as required by the
solution to the axial U(1) problem, one needs that the
free energy be a function of θ/N , instead of θ, otherwise θ
dependence would be suppressed exponentially in N [1].

Also in this case, the only possible way to reconcile
periodicity in θ and dependence on θ/N is to admit that
the free energy density f(θ) is a multibranched function
of θ [26–28], scaling in the large N limit as follows [26, 28]:

f(θ) = N2mink h

(
θ + 2πk

N

)
(19)

where k runs over all relative integers. For each value
of θ the system choices the branch which minimizes the
free energy. The function h can be chosen so as to have
its minimum in zero [68], so that the branch relevant to
θ ∼ 0 corresponds to k = 0. Moreover, the invariance
under CP , present at θ = 0, imposes that h is an even
function of θ.

A shift θ → θ + 2π corresponds to a passage from one
branch to the other, which, according to the large N scal-
ing in Eq. (19), must happen discontinously, in points
where the free energies of the two adiancent branches
cross with different (opposite) derivatives, i.e. through
a first order transition. For symmetry reasons that
happens for θ = ±π, or odd multiples of such values.
CP symmetry, which is exact in correspondence of such
points, is broken spontaneously by the choice of one of
the two equivalent branches, which are not invariant un-
der CP , but instead exchanged into each other. CP is
of course exact also for θ = 0 and for integer multiples of
2π, but there no spontaneous breaking happens.

The scenario depicted above is true only for sufficiently
low temperatures. Indeed, in the opposite limit of high
T , the instanton gas approximation must set in, which
predicts a smooth, periodic behavior in θ, but with an

Similarity with the T − µI
B phase diagram!!
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2) Tc(θ) for SU(3): analytic continuation & reweighting.

The reweighting factor
cos(θQ)

at different temperatures.
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 θ
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c 

T/T
c
 = 0.93

Polyakov Loop both as a func-
tion of both real and imaginary θ
at T = 1.055Tc .
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2) Tc(θ) for SU(3): analytic continuation & reweighting.
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Critical temperature ratios
for both real and imaginary θ

on the 403×10 lattice.

Real θ-reweighted
Polyakov Loop
Susceptibility.
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FIG. 6: Polyakov loop susceptibility as a function of β and
after reweighting at a few values of real θ. The shaded bands
correspond to data reweighted also in β.

lattice θ βc Tc(Q)/Tc

403 × 10 0.10 6.2081(4) 0.9999(8)

403 × 10 0.30 6.2068(4) 0.9979(8)
403 × 10 0.35 6.2062(5) 0.9970(8)
403 × 10 0.50 6.2040(6) 0.9937(11)
403 × 10 0.55 6.2033(7) 0.9927(12)

TABLE II: Results obtained for βc and Tc at real θ by the
reweighting technique on the 403 × 10 lattice. The ratios of
critical temperatures have been calculated using the θ = 0
critical β reported in Table I.

deconfined phase as θ2 increases; the quadratic behavior
in θ2 is consistent with analyticity around θ2 = 0 and
with the fact that 〈|L|〉 is a P -even quantity. We no-
tice that both features are consistent with the results of
Ref. [15].

Finally, in Fig. 6, we show results for the susceptibility
as a function of β, obtained after reweighting at θ = 0.3
and 0.5, together with the original data at θ = 0. It is
clear that the peak moves to lower values of β, i.e. to
lower temperatures, as θ increases, in agreement with re-
sults from analytic continuation. From the susceptibility
peaks we can extract the critical temperatures (see Ta-
ble II), and compare them with results at imaginary θ.
It does not make sense to fit reweighted data directly,
since they are obtained from the same data sample and
are therefore correlated; instead, in Fig. 7, we compare
reweighted data with the extrapolation linear in θ2 ob-
tained by fitting results at imaginary θ, showing that
there is indeed agreement, within statistical errors. That
gives further support to the validity of analytic continu-
ation, at least for small values of θ.

-2 -1.5 -1 -0.5 0 0.5
"
2

0.99
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T 
/ T

c

FIG. 7: Critical temperature as a function of θ2: we report
the result of the linear fit in θ2 obtained from simulations at
θ2 < 0.

C. Deconfinement and the Polyakov loop at fixed
topological background.

The general expression for a reweighted observable,
Eq. (8), can be rewritten in the following form:

〈O〉θ =
1

〈cos(θQ)〉

∞∑

Q=−∞
eiθQ P(Q) 〈O〉Q (10)

where 〈·〉Q stands for the average in a given topological
sector and P(Q) is the topological charge distribution at
θ = 0. It shows that a non-trivial dependence on θ is pos-
sible only if the observable has a non-trivial dependence
on Q. This is quite natural, since θ and Q are conjugate
quantities, like the particle density and the chemical po-
tential.

The fact that, as we have shown, the location of de-
confinement moves as θ is changed, leads us to suspect
that the dependence of physical observables on Q may be
significant around Tc. Investigating such dependence is
quite important for various reasons, for instance to un-
derstand the possible systematic effects involved in nu-
merical simulations carried out in a fixed topological sec-
tor, like it happens when investigating QCD with over-
lap fermions. Studies regarding such effects have been
reported, both at zero and finite T [23–25]; in particular,
a recent study shows that systematic effects in the deter-
mination of the topological susceptibility at finite T are
well under control [25]. In the present subsection we will
discuss about the dependence on Q of quantities directly
related to deconfinement, in particular the Polyakov loop
and its susceptibility, showing that in this case system-
atic effects, even if disappearing in the thermodynamical
limit, can be more significant.

Such study is best performed on the finest lattice at
our disposal, i.e. the 403 × 10, where the determination
of the topological background is most reliable. For that
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3) Tc(θ) for SU(Nc): large Nc & preliminary Nc = 2, 4.

Critical line curvature Rθ in the Large Nc limit.

Ingredients:
1) the transition is first order (Latent heat ∆ε).
2) the free energies of the confined-deconfined (c-d) phase are:

fc(t)

T
=
χθ2

2T
+ Act + O(t2)

fd (t)

T
= Ad t + O(t2).

Then one gets [M. D‘Elia and FN, PRL 109 (2012) 072001]:

Tc(θ)

Tc(0)
= 1− χ

2∆ε
θ2 = 1− R large Nc

θ θ2

Using the estimates of these quantities from [Lucini, Teper and
Wenger, JHEP 2005] we have:

R large Nc
θ =

χ

2∆ε
=

0.253(56)

N2
c

+ O(
1

N4
c

)
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3) Tc(θ) for SU(Nc): large Nc & preliminary Nc = 2, 4.

2 2.5 3 3.5 4 4.5 5
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Really preliminary results for N
c
 = 2 and 4         

- For SU(2) we have 2 lattice spacings: Nt = 6 and 8.
- For SU(4) we have only 2 lattice spacings: Nt = 5 and 6.

Francesco Negro On the phase diagram of YM theories with a θ term



4) Some issues regarding fixing topology.

Motivated by the general expression for a reweighted observable,
that can be rewritten as

〈O〉 =
1

〈cos(θQ)〉
+∞∑

Q=−∞
e iθQ P(Q) 〈O〉Q ,

we observe that a non trivial dependence on θ is present iff
observables restricted to different topological sectors have different
expectation values:

∂(anything)
∂θ

6= 0 ⇐⇒ (anything)Q 6= (anything)Q‘
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4) Some issues regarding fixing topology.

Polyakov loop vs topological charge at various temperatures.
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Results from our finest lattice: 403 × 10.
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4) Some issues regarding fixing topology.

Instanton gas approximation sets up just above Tc

[Bonati, D’Elia, Panagopoulos and Vicari, PRL 2013]

We assume each (anti)-instanton to contribute in modifing 〈|L|〉Q :

〈|L|〉Q ' const− γ

V
〈n + n〉Q ' 〈|L|〉+

γ

2V

(
1− Q2

Vχt

)

At T = 1.018 Tc we get:
8

model, which is based on the instanton gas approxima-
tion and follows the analysis reported in Ref. [23]. Let
us consider a generic, extensive quantity, like the aver-
age Polyakov loop times the volume V : we assume that
it gets a given, fixed contribution by each topological
object, instanton or anti-instanton, and that the topo-
logical objects are distributed according to the instanton
gas approximation, i.e. that the probability of having n
instantons and n̄ anti-instantons is given by

P(n, n̄) = e−2λ λnλn̄

n! n̄!
(12)

where 2λ = 〈Q2〉 = V χl and χl = a4 χ. The rele-
vant quantity, to describe the behavior as a function of
Q = n− n̄, is the average of the total number of topolog-
ical objects which are found at fixed Q, 〈n + n̄〉Q, which
can be extracted as a constrained average starting from
the double Poissonian distribution in Eq. (12). The re-
sult obtained at the lowest order in Q2/(2λ) = Q2/〈Q2〉,
which is the relevant expansion parameter when ap-
proaching the thermodynamical limit, is [23]

〈n + n̄〉Q $ 2λ − 1

2

(
1 − Q2

2λ

)
. (13)

The prediction for 〈|L|〉Q, which follows from our simpli-
fied model, is then

〈|L|〉Q = const − γ

V
〈n + n̄〉Q

$ 〈|L|〉 +
γ

2V

(
1 − Q2

V χl

)
. (14)

where we have defined as −γ the contribution to V |L|
coming from each (anti)instanton and we have exploited
the fact that the expression in parentheses vanishes when
taking the average over all sectors.

Eq. (14), which is expected to be valid as the ther-
modynamical limit is approached, predicts 〈|L|〉Q −〈|L|〉
to vanish linearly in 1/V . This is confirmed by the be-
havior shown in Fig. 10, and a linear fit to data on
the larger volumes, which is shown in the same figure,
gives back γ ∼ 6 102. It is interesting that, once fixed
γ and knowing from the average over the whole ensem-
ble that χl = 〈Q2〉/V ∼ 0.947 10−5, the behavior of
the Polyakov loop as a function of Q in the large vol-
ume limit is completely fixed by the model, in particular
〈|L|〉Q=0 − 〈|L|〉|Q| $ γQ2/(2χV 2). In order to check
that, in Fig. 11 we plot the quantity

Σ(|Q|) =
〈|L|〉Q=0 − 〈|L|〉|Q|

〈|L|〉Q=0
, (15)

which gives the relative deviation of the Polyakov loop
from the value it takes in the trivial topological sector
(the error on Σ(|Q|) has been obtained by a jackknife
algorithm). In particular, we plot Σ(|Q|) as a function
of |Q|/V for |Q| = 1, 2, 3 and for all the explored vol-
umes, together with the model prediction, which has no

0 5e-06 1e-05 1.5e-05
1 / V

1e-03

2e-03

3e-03

<|
L|

> Q
 =

 0
  -

  <
|L

|>

FIG. 10: Variation of the Polyakov loop modulus in the Q = 0
sector, with respect to the average over all sectors, plotted as
a function of 1/V , for T ! 1.018 Tc. The dashed line is the
result of a linear fit in 1/V .

more free parameters left. The fair agreement observed
for small values of |Q|/V is therefore highly non-trivial,
given the crudeness of the model: part of the success
can be ascribed to the rapid approach to the instanton
gas approximation which takes place right above Tc, as
demonstrated by the results of Ref. [36]. As |Q|/V in-
creases, however, the topological background is not dilute
enough and the model prediction fails.

It would be nice to study the interplay between topo-
logical activity and the holonomy in more detail, in
particular approaching the deconfining transition from
above, and compare with model studies about the same
issue (see, e.g., Ref. [50]), however that goes beyond the
purpose of our present investigation.

Finally, it is important to stress that, despite the fact
that the approach to the thermodynamical limit of 〈|L|〉Q

seems to be well understood and that systematic effects
vanish as 1/V , from Fig. 11 we learn that they are still
appreciable, and of the order of 10%, even on the largest
explored volume, whose aspect ratio Ls/Lt = 4 is com-
mon to many finite temperature computations found in
the literature.

III. PHASE DIAGRAM IN THE T − θ PLANE:
GENERAL FEATURES AND ANALOGIES WITH

THE DIAGRAM AT IMAGINARY µB

After studying Tc(θ), it is tempting to draw a sketch
of the whole phase diagram in the T -θ plane. On the
imaginary side, θ = i θI , no particular structure is ex-
pected apriori, since CP symmetry is explicitly broken
whenever Im(θ) &= 0. Indeed, we have not observed any
transition, apart from the deconfining one, in the range
of explored values of θI , even if we cannot exclude the
presence of new phase structures at larger values of θI .
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4) Some issues regarding fixing topology.

Also the Polyakov Loop Susceptibility is senstitive to the
topological sector, giving rise to a shift in the critical temperature.

7

reason we have divided the set of configurations sampled
at each β according to the value of Q obtained via cool-
ing, as discussed in previous subsection. The expectation
value 〈·〉Q is obviously independent of θ since, in a fixed
topological background, θ only adds an irrelevant overall
phase factor, hence in principle one may think of combin-
ing equal Q configurations sampled at different imaginary
values of θ. However, one must consider that the lattice
charge operator entering Eq. (3) contains irrelevant dis-
cretization terms, which are not constant over a given
topological sector and may lead to a residual dependence
on θL. For that reason, in the following we will consider
only configurations sampled at θ = 0.

Let us start by showing, in Fig. 8, the behavior of the
Polyakov loop as a function of Q for a few temperatures
around Tc

〈|L|〉|Q| =

∑N
i=1 |L|i δ|Q|,|Qi|∑N

i=1 δ|Q|,|Qi|
, (11)

where i runs over the N measures and we have combined
measures from opposite topological sectors, exploiting
the symmetry of the Polyakov loop under parity transfor-
mations, in order to reduce statistical errors. The exact
symmetry visible in Fig. 8 is therefore artificial, however
we have verified that the symmetry holds, within errors,
even before such combination. We observe that, while be-
low the transition the dependence on |Q| is quite mild, it
gets stronger at the transition and becomes only slightly
milder above Tc. A similar behavior is observed for the
average plaquette, even if in this case the relative varia-
tion from one sector to the other is always modest and
never larger than 10−4.

The dependence on Q is quite visible also in the sus-
ceptibility of the Polyakov loop, which is shown in Fig. 9
as a function of β for Q = 0 and |Q| = 5. The shift of
the susceptibility peaks tells us that even the transition
temperature can be influenced by the overall topologi-
cal background. In particular, in Table III, we report
the values of Tc(Q), obtained by fitting such peaks with
Lorentzian functions. The critical temperature tends
to increase as |Q| increases; this is qualitatively consis-
tent with what found when adding an imaginary θ term,
which has the effect of shifting the average value of the
topological charge distribution towards non-zero values.

One expects that systematic effects present in a fixed
sector Q disappear as the thermodynamical limit is ap-
proached. In order to verify that, we have performed,
for a given value of T # 1.018 Tc (β = 6.22), simula-
tions on lattices with different spatial volumes (L3

s × Lt

with Lt = 10 and Ls = 16, 18, 20, 25, 30, 35, 40), then
combining measures obtained within different topological
sectors Q as described above. In Fig. 10 we show how
the difference of the Polyakov loop modulus in the Q = 0
sector, taken with respect to its average over all sectors,
changes as a function of the volume V = Lt L3

s. The
difference clearly approaches zero linearly in 1/V , as one
indeed expects on general grounds.
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FIG. 8: Dependence of the Polyakov loop modulus on the
topological sector Q, determined on the 403 × 10 lattice and
for a few values of T around the transition.

lattice |Q| βc Tc(Q)/Tc

403 × 10 0 6.2065(5) 0.9975(10)
403 × 10 1 6.2068(5) 0.9978(10)
403 × 10 2 6.2069(5) 0.9981(10)

403 × 10 3 6.2080(5) 1.0000(10)
403 × 10 4 6.2092(5) 1.0015(10)
403 × 10 5 6.2108(7) 1.0039(12)

403 × 10 6 6.2118(7) 1.0053(12)

TABLE III: Results obtained for βc and Tc at fixed topology
calculated with βc = 6.2082(4).

6.19 6.2 6.21 6.22 6.23 6.24
!

1

2
Q  = 0
|Q| = 5

FIG. 9: Susceptibility of the Polyakov loop as a function of β
on the 403 ×10 lattice, determined after fixing the topological
sector.

We will now try to better describe the observed de-
pendence of the Polyakov loop on Q by a very simplified

From Q = 0 to Q = 5 the change in Tc is ∼ 6.5%
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5) Conclusions

I Use of imaginary θI parameter to cure sign problem for LGT.

I Determination of the curvature Rθ of the critical line.

I Reweighting in θ to support analyticity.

I Large Nc estimate and comparison with SU(2) and SU(4).

I Dependence on the topological sector.

Perspectives:
I Explore the (T − θ, T − µB) speculated duality.

I Complete the analysis to SU(2) and SU(4).

I Larger Nc .
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6) Backup: sampling algorithms.

Each link appears linearly in the simple action we employed.
⇓

We can exploit standard Heatbath and Overrelaxation algorithms.
It is necessary to modify the staples definition. Pictorically:

With more complicated topological charge definitions on the lattice
such standard algorithms wouldn’t have been applicable.
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6) Backup: renormalization factor Z (β).
Renormalization factor determined as Z (β) = 〈QLQ〉0/〈Q2〉0,
method proposed in [Panagopoulos and Vicari, JHEP 2011].
Needed to go from θL to θI ≡ Z (β)θL.
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Simulations: 164 at θ = 0
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6) Backup: summary of the SU(3) simulations.

lattice θL βc θI Tc(θI )/Tc(0)
163 × 4 0 5.6911(4) 0 1
163 × 4 5 5.6934(6) 0.370(10) 1.0049(11)
163 × 4 10 5.6990(7) 0.747(15) 1.0171(12)
163 × 4 15 5.7092(7) 1.141(20) 1.0395(11)
243 × 6 0 5.8929(8) 0 1
243 × 6 5 5.8985(10) 0.5705(60) 1.0105(24)
243 × 6 10 5.9105(5) 1.168(12) 1.0335(18)
243 × 6 15 5.9364(8) 1.836(18) 1.0834(23)
323 × 8 0 6.0622(6) 0 1
323 × 8 5 6.0684(3) 0.753(8) 1.0100(11)
323 × 8 8 6.0813(6) 1.224(15) 1.0312(14)
323 × 8 10 6.0935(11) 1.551(20) 1.0515(21)
403 × 10 0 6.2082(4) 0 1
403 × 10 6.0 6.2241(13) 1.068(7) 1.0239(22)
403 × 10 8.4 6.2381(5) 1.509(10) 1.0453(10)
403 × 10 13.4 6.2821(9) 2.461(22) 1.1144(16)
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