Practical approach to the sign problem at finite theta-vacuum angle

Phys. Rev. D87, 056003 (2013).

Takahiro Sasaki Kyushu University, Japan

H. Kouno (Saga Univ.) M. Yahiro (Kyushu Univ.)

June 31 Lattice 2013, Mainz, Germany

Sign problem vs. Theta vacuum

$$\mathcal{L}_{\text{QCD}} = \bar{q}_{f}(\gamma_{\nu}D_{\nu} + m_{f})q_{f} + \frac{1}{4}F^{a}_{\mu\nu}F^{a}_{\mu\nu} - i\theta\frac{1}{64\pi^{2}}\epsilon_{\mu\nu\sigma\rho}F^{a}_{\mu\nu}F^{a}_{\sigma\rho}$$

$$U_{A}(1) \text{ transformation} \quad \begin{array}{c} \cdot \text{Topological effect} \\ \cdot \text{Complex} \end{array}$$

$$\mathcal{L}'_{\text{QCD}} = \bar{q}'_{f}(\gamma_{\nu}D_{\nu} + m_{f}(\theta))q'_{f} + \frac{1}{4}F^{a}_{\mu\nu}F^{a}_{\mu\nu}$$

$$\begin{array}{c} \cdot \text{Topological effect} \\ \cdot \text{Complex} \end{array}$$

$$\begin{array}{c} \text{This parity-odd term} \\ \text{makes fermion determinant complex.} \end{array}$$

Lattice QCD simulation

- Taylor expansion around $\theta = 0$.
- •Analytic continuation from imaginary θ region.

Suggestion

$$\mathcal{L}_{QCD} = \sum_{l=u,d} \bar{q}'_{l} \mathcal{M}_{l}(\theta) q'_{l} + \bar{q}'_{s} \mathcal{M}_{s} q'_{s} + \frac{1}{4} F^{a}_{\mu\nu} F^{a}_{\mu\nu}$$
$$\mathcal{M}_{l}(\theta) \equiv \gamma_{\nu} D_{\nu} + m_{l} \cos{(\theta/2)} + m_{l} i \gamma_{5} \sin{(\theta/2)},$$
$$\mathcal{M}_{s} \equiv \gamma_{\nu} D_{\nu} + m_{s}.$$
$$\mathcal{M}'_{l}(\theta) \equiv \gamma_{\nu} D_{\nu} + m_{l} \cos{(\theta/2)} \text{ Neglect the P-odd mass}$$

Reweighting Method

$$\langle \mathcal{O} \rangle = \int \mathcal{D}A \ \mathcal{O}' \left(\det \mathcal{M}'_l(\theta) \right)^2 \det \mathcal{M}_s e^{-S_g}$$

$$\mathcal{O}' \equiv \mathcal{O} \frac{\left(\det \mathcal{M}_l(\theta) \right)^2}{\left(\det \mathcal{M}'_l(\theta) \right)^2} \approx \mathcal{O}$$
 Free from the sign problem

2/15

 $\det \mathcal{M}'_l(\theta)$: Fermion determinant without P odd mass T. S., J. Takahashi, Y. Sakai, H. Kouno, and M. Yahiro, Phys. Rev. D**85** 056009 (2012) We evaluate the validity of our reweighting method with the average reweighting factor.

- 1.We formulate in the 2 flavor PNJL model to concentrate on the light flavor sector.
- 2. Apply three reference systems
 Simply neglect the P-odd mass (Reference A)
 Add a higher order correction (Reference B and C)
- 3. Estimate the effect of mesonic fluctuation.

PNJL model

2 flavor Polyakov-loop extended Nambu-Jona-Lasinio model $\mathcal{L} = \bar{q}(\gamma_{\nu}D_{\nu} + m_{0})q - G_{1}\sum[(\bar{q}\tau_{a}q)^{2} + (\bar{q}i\gamma_{5}\tau_{a}q)^{2}]$ a=0 $-8G_2[e^{i\theta} \det \bar{q}_R q_L + e^{-i\theta} \det \bar{q}_L q_R] + \mathcal{U}(T, \Phi, \Phi^*)$ $\Phi = \frac{1}{3} \operatorname{tr}_{c}(L)$ Kobayashi-Maskawa-'t Hooft interaction • breaks the $U_{\rm A}(1)$ symmetry explicitly $L = \exp\left(iA_4/T\right)$ • Determinant is taken in the flavor space.

- •Quarks are interacting by point interaction.
- Gluon is treated as back ground field.
- Potential \mathcal{U} controls the back ground and determined to reproduce pure YM LQCD data.

NJL model

2 flavor NJL model with theta parameter $\mathcal{L} = \bar{q}(\gamma_{\nu}D_{\nu} + m_0)q - G_1 \sum \left[(\bar{q}\tau_a q)^2 + (\bar{q}i\gamma_5\tau_a q)^2 \right]$ a = 0 $-8G_2[e^{i\theta} \det \bar{q}_R q_L + e^{-i\theta} \det \bar{q}_L q_R] + \mathcal{U}(T, \Phi, \Phi^*)$ Chiral transformation $q=e^{i\gamma_5rac{ heta}{4}}q'$ $\mathcal{L} = \bar{q}'(\gamma_{\nu}D_{\nu} + m(\theta))q' - G_{+}[(\bar{q}'q')^{2} + (\bar{q}'i\gamma_{5}\vec{\tau}q')^{2}]$ $-G_{-}[(\bar{q}'\vec{\tau}q')^{2}+(\bar{q}'i\gamma_{5}q')^{2}]+U$ Cause $G_{+} = G_{1} \pm G_{2}$ the sign problem $m(\theta) = m_0 \cos(\theta/2) + m_0 i \gamma_5 \sin(\theta/2)$ 5/15

Reweighting factor

Reweighting Method

$$\langle \mathcal{O} \rangle = \int \mathcal{D}A \ \mathcal{O} \det \mathcal{M}(\theta) e^{-S_g}$$

= $\int \mathcal{D}A \ \mathcal{O}' \det \mathcal{M}_{ref}(\theta) e^{-S_g}$
 $\mathcal{O}' \equiv R(\theta)\mathcal{O}$
 $R(\theta) \equiv \frac{\det \mathcal{M}(\theta)}{\det \mathcal{M}_{ref}(\theta)}$: Reweighting factor

Average reweighting factor

The expectation value of $R(\theta)$ in the reference theory

$$\langle R(heta)
angle = rac{Z}{Z_{
m ref}}$$

J. O. Andersen, L. T. Kyllingstad, and K. Splittroff, J. High Energy Phys. 01, 055 (2010).

Average reweighting factor in the NJL model

Saddle point approximation

$$\langle R(\theta) \rangle \approx \sqrt{\frac{\det H_{\mathrm{ref}}}{\det H}} e^{-\beta V(\Omega - \Omega_{\mathrm{ref}})}$$

Hessian matrix

$$H_{ij} = \frac{\partial^2 \Omega}{\partial \phi'_i \partial \phi'_j} \quad \{\phi'_i\} \equiv \{\sigma', \eta', a'_i, \pi'_i\}$$

 Ω : Thermodynamic potential

Volume size

For the
$$N_x^3 \times N_\tau$$
 lattice,
 $\beta V = \left(\frac{N_x}{N_\tau}\right)^3 \frac{1}{T^4} \qquad N_x/N_\tau = 4$

Reference theories

$$\mathcal{L} = \bar{q}'(\gamma_{\nu}D_{\nu} + m(\theta))q' - G_{+}[(\bar{q}'q')^{2} + (\bar{q}'i\gamma_{5}\vec{\tau}q')^{2}] - G_{-}[(\bar{q}'\vec{\tau}q')^{2} + (\bar{q}'i\gamma_{5}q')^{2}] + \mathcal{U}$$

Original theory

$$m(\theta) = m_0 \cos(\theta/2) + m_0 i \gamma_5 \sin(\theta/2)$$

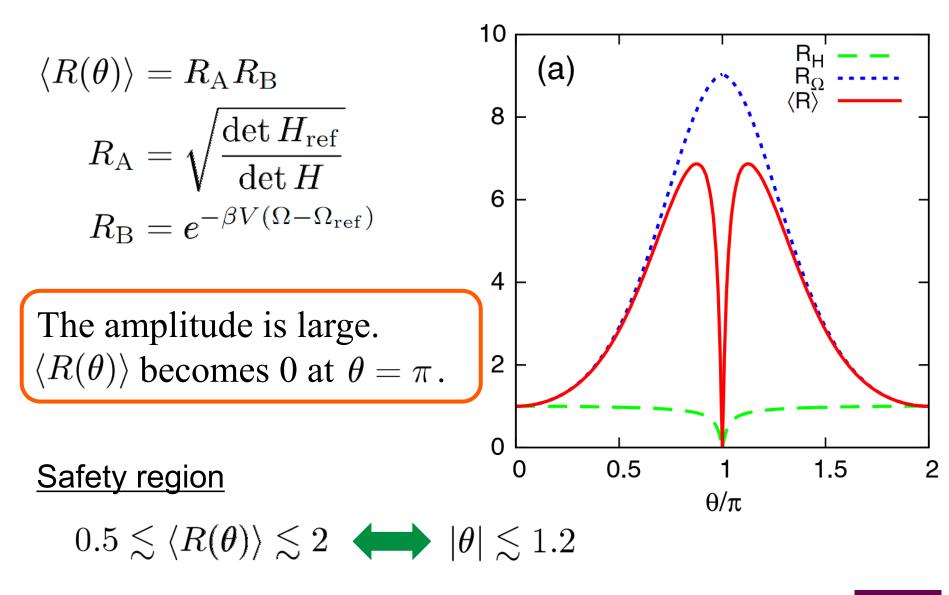
Reference theory A

 $\begin{array}{l} m(\theta) \to m_0 \cos(\theta/2) \\ \hline \mathbf{Reference theory B, C} \\ m(\theta) \to m_0 \cos(\theta/2) + \frac{1}{\alpha} \left\{ m_0 \sin(\theta/2) \right\}^2 \end{array}$

 α is a parameter with mass dimension.

Reference A

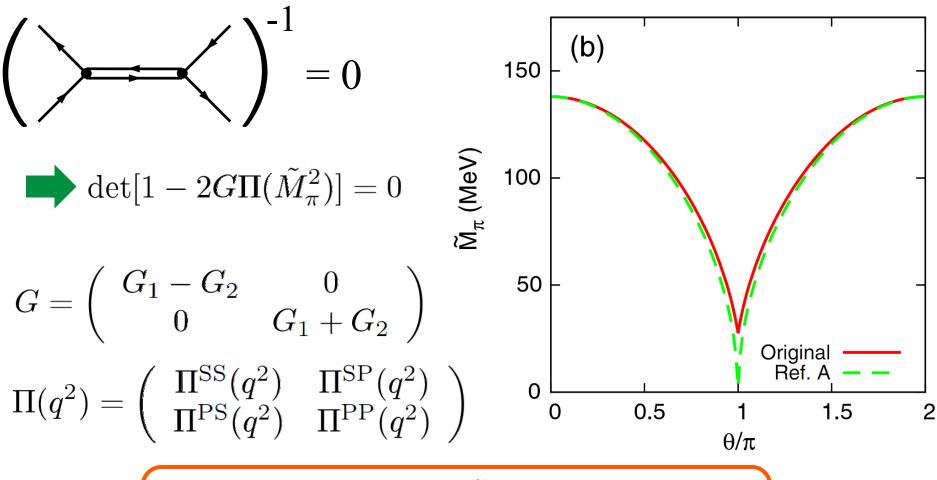
 $m_{
m A}=m_0\cos(heta/2)$



"Pion" mass

$$m_{
m A}=m_0\cos(heta/2)$$

 M_{π} is the lowest pole mass in the isovector channel.

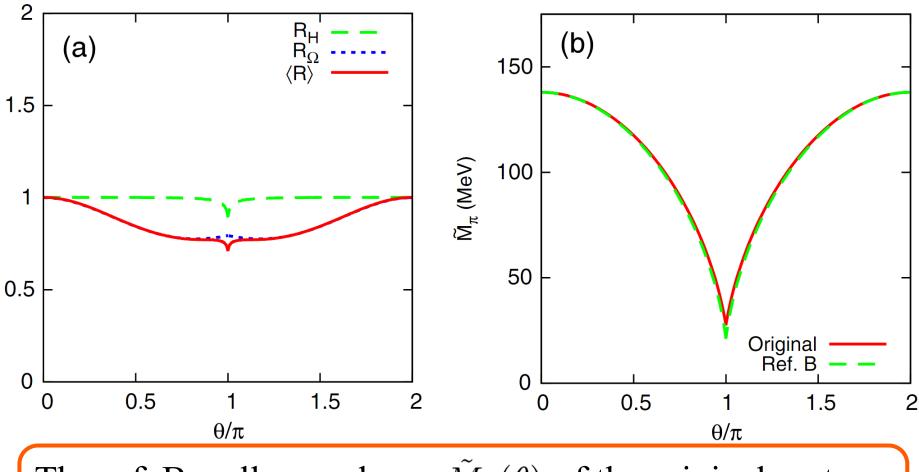


In the reference A, $\tilde{M}_{\pi} = 0$ at $\theta = \pi$. (corresponds to the chiral limit)

10/15

Reference B

$$m_{
m B} = m_0 \cos(heta/2) + rac{1}{lpha} \{m_0 \sin(heta/2)\}^2 \ , \ \ lpha = M_\pi$$



The ref. B well reproduces $M_{\pi}(\theta)$ of the original system. However $\langle R(\theta) \rangle$ is a little bit small. 11/15

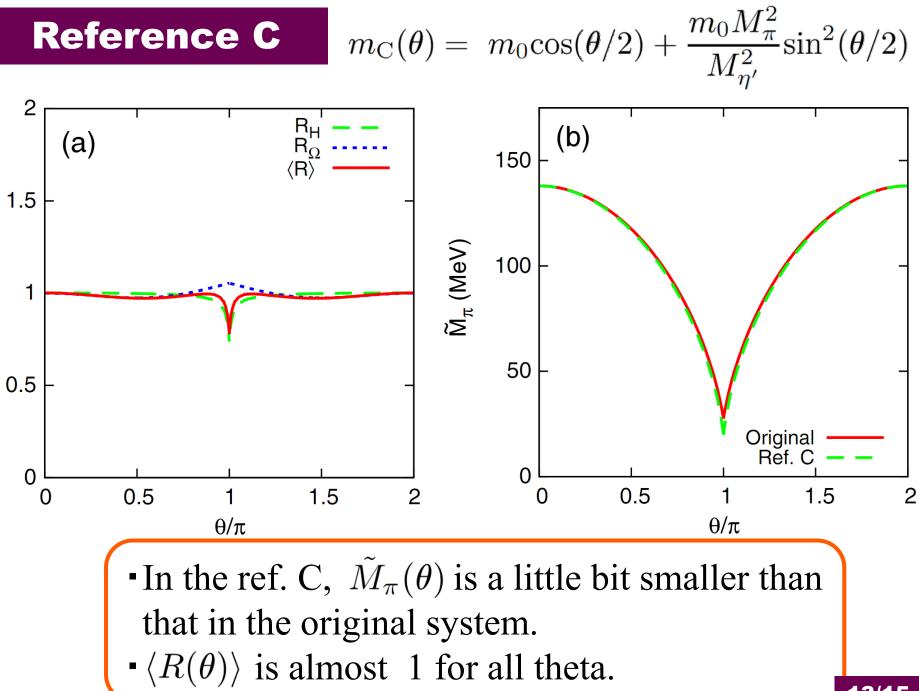
Reference C

From the chiral Lagrangian with $O(m_0^2)$ term [1]

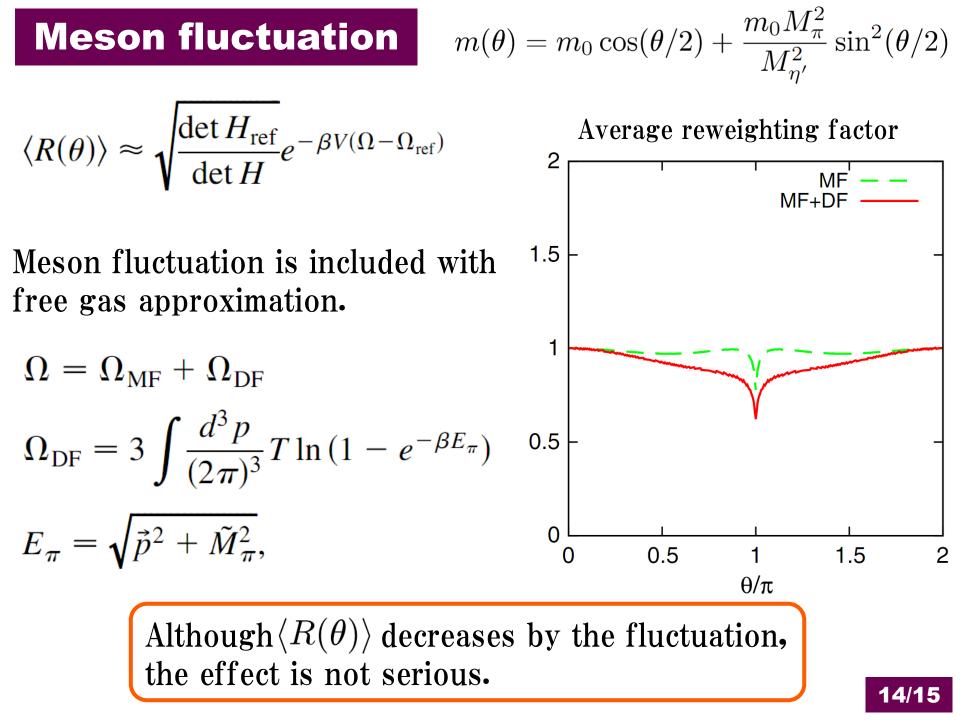
$$\begin{bmatrix} \tilde{M}_{\pi}^{2}(\theta) = \frac{m_{0}|\sigma_{0}|}{f_{\pi}^{2}}|\cos(\theta/2)| + \frac{2l_{7}m_{0}^{2}\sigma_{0}^{2}}{f_{\pi}^{6}}\sin^{2}(\theta/2)\\ l_{7} \approx \frac{f_{\pi}^{2}}{2M_{\eta'}^{2}} \quad \text{(Large N}_{c} \text{ estimation [2])} \end{bmatrix}$$

$$\tilde{M}_{\pi}^{2}(\theta) = \frac{|\sigma_{0}|}{f_{\pi}^{2}} \left[m_{0} |\cos(\theta/2)| + \frac{m_{0}M_{\pi}^{2}}{M_{\eta'}^{2}} \sin^{2}(\theta/2) \right]$$

Interpret as $m(\theta)$
$$m_{C}(\theta) = m_{0}\cos(\theta/2) + \frac{m_{0}M_{\pi}^{2}}{M_{\pi'}^{2}} \sin^{2}(\theta/2)$$



13/15



Summary

We have evaluated the average reweighting factor for finite theta-vacuum angle with the 2 flavor PNJL model.

The effect of pion fluctuation is not serious for the estimation.

Our best reference theory

$$m(\theta) = m_0 \cos(\theta/2) + m_0 i\gamma_5 \sin(\theta/2)$$
$$m_{\rm C}(\theta) = m_0 \cos(\theta/2) + \frac{m_0 M_\pi^2}{M_{\eta'}^2} \sin^2(\theta/2)$$