Critical behaviour in the QCD Anderson transition

Matteo Giordano, Tamás G. Kovács and Ferenc Pittler

Institute for Nuclear Research (ATOMKI), Debrecen

Lattice 2013
Mainz, 31st July 2013
Spectrum of the Dirac Operator

Dirac operator (in Euclidean space) \slashed{D}
- anti-Hermitian: purely imaginary spectrum
- $\{\slashed{D}, \gamma_5\} = 0$: symmetric w.r.t $\lambda = 0$

Chiral condensate in the chiral limit \Leftrightarrow spectral density at the origin
[Banks, Casher (1980)]

\[
\langle \bar{\psi} \psi \rangle = \lim_{m \to 0} \lim_{V \to \infty} \frac{\pi \rho(0)}{V}, \quad \rho(\lambda) = \left\langle \sum_i \delta(\lambda - \lambda_i) \right\rangle
\]

Different localisation properties of the low-lying eigenmodes below and above the chiral-crossover temperature T_c
- $T < T_c$: extended
- $T > T_c$: localised
Localisation in the Dirac Spectrum

Low-lying modes are localised above the chiral-crossover temperature T_c

\[
\text{IPR} = \sum_x |\psi(x)|^4
\]

\[
\text{PR} = \text{IPR}^{-1} / V_4
\]

\[
NT = 4, \beta = 3.75
\]

\[
\ell = a \cdot \text{IPR}^{-1/4} \sim \text{loc. length}
\]

\[
\ell_{\text{localised}} \sim T^{-1}
\]

- Eigenmodes localised for $\lambda < \lambda_c(T)$
- No localised modes in the chirally broken phase: $\lambda_c(T_c) \sim 0$
- $\lambda_c \sim$ effective gap: low-lying modes do not contribute to hadronic correlators at large distance
Anderson Model in 3D

Tight-binding Hamiltonian for “dirty” conductors

\[H = \sum_n \varepsilon_n |n\rangle \langle n| + \sum_{n,\mu} |n + \hat{\mu}\rangle \langle n| + |n\rangle \langle n + \hat{\mu}| \]

\(\varepsilon_n \): random on-site potential (width \(W \sim \) disorder), \(|n\rangle \): localised states

- No disorder (\(W = 0 \)): delocalised eigenstates
- Nonzero disorder: eigenstates at the band edge become localised due to destructive interference (Anderson localisation)

[Anderson (1958)]

As \(W \) increases, \(E_c \) moves towards the band center, for \(W > W_c \) all the states become localised: metal-insulator transition
Anderson Model in 3D

Tight-binding Hamiltonian for “dirty” conductors

\[H = \sum_n \varepsilon_n |n\rangle\langle n| + \sum_{n,\mu} |n + \hat{\mu}\rangle\langle n + \hat{\mu}| + |n\rangle\langle n| + |n\rangle\langle n + \hat{\mu}| \]

\(\varepsilon_n \): random on-site potential \((\text{width } W \sim \text{disorder})\), \(|n\rangle\): localised states

- No disorder \((W = 0)\): delocalised eigenstates
- Nonzero disorder: eigenstates at the band edge become localised due to destructive interference (Anderson localisation)

[Anderson (1958)]

As \(W \) increases, \(E_c \) moves towards the band center, for \(W > W_c \) all the states become localised: metal-insulator transition
Anderson Model in 3D

Tight-binding Hamiltonian for “dirty” conductors

\[H = \sum_n \varepsilon_n |n\rangle \langle n| + \sum_{n,\mu} |n + \hat{\mu}\rangle \langle n| + |n\rangle \langle n + \hat{\mu}| \]

\(\varepsilon_n \): random on-site potential (width \(W \sim \) disorder), \(|n\rangle \): localised states

- No disorder (\(W = 0 \)): delocalised eigenstates
- Nonzero disorder: eigenstates at the band edge become localised due to destructive interference (Anderson localisation)

[Anderson (1958)]

As \(W \) increases, \(E_c \) moves towards the band center, for \(W > W_c \) all the states become localised: metal-insulator transition
Anderson Model in 3D

Tight-binding Hamiltonian for “dirty” conductors

\[H = \sum_n \varepsilon_n |n\rangle \langle n| + \sum_{n,\mu} |n + \hat{\mu}\rangle \langle n| + |n\rangle \langle n + \hat{\mu}| \]

\(\varepsilon_n\): random on-site potential (width \(W \sim\) disorder), \(|n\rangle\): localised states

- No disorder (\(W = 0\)): delocalised eigenstates
- Nonzero disorder: eigenstates at the band edge become localised due to destructive interference (Anderson localisation)

\[\text{Critical behaviour in QCD Anderson transition} \]

As \(W\) increases, \(E_c\) moves towards the band center, for \(W > W_c\) all the states become localised: metal-insulator transition
Anderson Model in 3D

Tight-binding Hamiltonian for “dirty” conductors

\[H = \sum_n \varepsilon_n |n\rangle \langle n| + \sum_{n,\mu} |n + \hat{\mu}\rangle \langle n| + |n\rangle \langle n + \hat{\mu}| \]

\(\varepsilon_n \): random on-site potential (width \(W \sim \) disorder), \(|n\rangle \): localised states

- No disorder (\(W = 0 \)): delocalised eigenstates
- Nonzero disorder: eigenstates at the band edge become localised due to destructive interference (Anderson localisation)

[Anderson (1958)]

As \(W \) increases, \(E_c \) moves towards the band center, for \(W > W_c \) all the states become localised: metal-insulator transition
Analogs and Differences Between AM and QCD

Anderson Model

\[E_{\text{c}}(W) \]

Extended localised

\[W_{\text{c}} \]

QCD

\[\lambda_{\text{c}}(T) \]

Extended localised

Localised modes \leftrightarrow low spectral density
Modes not mixed by fluctuations \rightarrow Poisson statistics

Extended modes \leftrightarrow high spectral density
Modes mixed by fluctuations \rightarrow Random Matrix Theory statistics

Most conveniently checked using the unfolded spectrum
Unfolding: local rescaling of eigenvalues $\lambda_i \rightarrow \frac{\lambda_i}{\langle \lambda_{i+1} - \lambda_i \rangle}$
Spectrum of the Dirac Operator above T_c

Symanzik improved gauge action, 2+1 stout smeared staggered fermions

[Budapest-Wuppertal collaboration]

$NT = 4, \beta = 3.75 \rightarrow T = 394 \text{ MeV} = 2.6 T_c, a = 0.125 \text{ fm}$

$\langle s^2 \rangle_\lambda = \int_0^\infty ds P_\lambda(s) s^2$

Curve becomes steeper as the volume is increased \rightarrow true phase transition
3D Anderson model: metal-insulator second-order phase transition
Divergent correlation length at critical disorder W_c/at mobility edge E_c:

$$\xi_\infty(W) \propto |W - W_c|^{-\nu} \quad \xi_\infty(E) \propto |E - E_c|^{-\nu}$$

Finite volume L^3, take $Q(E, L)$ such that

$\lim_{L \to \infty} Q(E, L) = \begin{cases}
Q_m & E < E_c \quad \text{(metallic side)} \\
Q_c & E = E_c \quad \text{(critical point)} \\
Q_i & E > E_c \quad \text{(insulator side)}
\end{cases}$

Finite-size scaling: $Q(E, L) = f(L/\xi_\infty(E)) = F(L^{1/\nu}(E - E_c))$

$$Q(E, L) \approx Q(E_c, L) + Q'(E_c, L)(E - E_c) = F(0) + F'(0)L^{1/\nu}(E - E_c)$$
Use one-parameter scaling to all orders to measure ν and λ_c

$$Q(\lambda, L) = f(L/\xi(\lambda)) = F(L^{1/\nu}(\lambda - \lambda_c)) = \sum_{n=0}^{\infty} \frac{F^{(n)}(0)}{n!} L^{n/\nu} (\lambda - \lambda_c)^n$$

- Use several volumes in a two-variable fit
- Estimate the systematic error through constrained (Bayesian) fits including more and more terms in the expansion

$$Q = l_\lambda = \int_0^{s_0} ds P_\lambda(s)$$
Anderson model 3D

\[\nu_{\text{chSE}} = 1.375 \pm 0.016 \]

\[\nu_{\text{chUE}} = 1.43 \pm 0.04 \]

\[\nu_{\text{chOE}} = 1.57 \pm 0.02 \]

QCD

\[\nu = 1.425(65) \]

\[(L_{\text{min}} = 36) \]

[Slevin, Ohtsuki (1997), (1999), Asada et al., (2005)]
Anderson model 3D

\[\nu_{\text{chSE}} = 1.375 \pm 0.016\]
\[\nu_{\text{chUE}} = 1.43 \pm 0.04\]
\[\nu_{\text{chOE}} = 1.57 \pm 0.02\]

QCD

\[\nu = 1.425(65)\]
\((L_{\text{min}} = 36)\)

[Slevin, Ohtsuki (1997), (1999), Asada et al., (2005)]
Shape Analysis

Plot two observables against each other, if points collapse on a single curve → universal path in the space of probability distribution [Varga et al. (1995)]

Family of RM models connecting Poisson ↔ RMT [talk by S.M. Nishigaki]

Points flow towards the Poisson and RMT “fixed points” as $L \to \infty$

Unstable fixed point \approx critical point, different universality class

Universal path also changing T or a?
Shape Analysis

Plot two observables against each other, if points collapse on a single curve → universal path in the space of probability distribution \cite{Varga et al. (1995)}

Family of RM models connecting Poisson ↔ RMT [talk by S.M. Nishigaki]

![Graph showing points flow towards the Poisson and RMT "fixed points" as \(L \to \infty \)]

Points flow towards the Poisson and RMT “fixed points” as \(L \to \infty \)

Unstable fixed point \(\approx \) critical point, different universality class

Universal path also changing \(T \) or \(a \)?
Shape Analysis

Plot two observables against each other, if points collapse on a single curve → universal path in the space of probability distribution [Varga et al. (1995)]
Family of RM models connecting Poisson ↔ RMT [talk by S.M. Nishigaki]

Points flow towards the Poisson and RMT “fixed points” as $L \to \infty$
Unstable fixed point \approx critical point, different universality class
Universal path also changing T or a?
Shape Analysis

Plot two observables against each other, if points collapse on a single curve → universal path in the space of probability distribution [Varga et al. (1995)]

Family of RM models connecting Poisson ↔ RMT [talk by S.M. Nishigaki]

Points flow towards the Poisson and RMT “fixed points” as $L \to \infty$

Unstable fixed point \approx critical point, different universality class

Universal path also changing T or a?
Summary and Outlook

- Dirac spectrum above T_c shows a localisation/delocalisation transition analogous to the Anderson transition in condensed matter
- Critical exponent consistent with Anderson model: same universality class?

Open issues:

- Inclusion of corrections to scaling
- Study of the multifractal structure of eigenmodes near the transition
References

Check possible systematic effects due to the choice of the fitting range and of the width of the bins

$$I_\lambda \rightarrow \int_{B_{\Delta \lambda}(\lambda)} d\lambda' \; I_{\chi'} \rho(\lambda') / \int_{B_{\Delta \lambda}(\lambda)} d\lambda' \; \rho(\lambda')$$
Check possible systematic effects due to the choice of the fitting range and of the width of the bins

\[I_\lambda \rightarrow \int_{B_{\Delta\lambda}(\lambda)} d\lambda' I_{\lambda'} \rho(\lambda') \bigg/ \int_{B_{\Delta\lambda}(\lambda)} d\lambda' \rho(\lambda') \]