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® Free-energy density with “shifted” boundary conditions
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Path integrals with shifted boundary conditions: infinr@ume limit (1)

® We are interested in the partition function
d(x) = ¢(x + Vepem) m € Z*

Lo 0 0 O
Lot Li 0 0O
Lo&2 0 Lo O
Lo&s 0 0 Ls

Z(Lo,§) =Tr {e‘Lo(ﬁ—’iE'ﬁ)}
Vébc —
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Lorentz [SO(4)] invariance implies
Lo/v1 Limé& 0 0
0 Liv+ 0 O

0 0 Ly O
0 0 0 Ls

Z(LO,&) = Tr{exp —Ll’yl(ﬁ+i£1ﬁo)}, s/bc = AV =
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Path integrals with shifted boundary conditions: infinr@ume limit (1)

® Assuming that H has a translationally-invariant
vacuum and a mass gap [€ = {£1,0,0}]

~ ~ /
Z(Lo,&) =Tr { exp—L1v1(H + 7}§1P0)} . Vabe

the right hand side becomes insensitive to the phase
in the limit L1 — oo at fixed &;

f(Lm/l +§%) = — lim_ le In Z(Lo, &)

0

® Thanks to cubic symmetry (infinite volume)

f(Lm/1+£2):— lim ﬁan(Lo,E),

V—oo L

for a generic shift &
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Thermal field theory in a moving frame

®If H and P are the Hamiltonian and the total momentum operator expressed in a moving
frame, the standard partition function is

Z(Lo,v) =Tr {e_LO (ﬁ_”'ﬁ)}
® If we continue Z to imaginary velocities v = i€
Z(Lo, &) = Tr {e~ Lo(H—i&-P)y

® The functional dependence f(Lg+/1 + &2) is consistent with modern thermodynamic

arguments on the Lorentz transformation of the temperature and the free-energy
[Ott 63; Arzelies 65; see Przanowski 11 for a recent discungsi

® In the zero-temperature limit the invariance of the theory (and of its vacuum) under the
Poincaré group forces its free energy to be independent of the shift £

® At non-zero temperature the finite length Lo breaks SO(4) softly, and the free energy
depends on the shift (velocity) explicitly but only through the combination 8 = Lg+/1 + &2
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Ward identities for correlators df ., at zero shift

#® In the path integral formalism

Lo (To1To1)e = (Too) — (Th1)

L3 {(To1To1 To1 To1)e = 9(Th1) — 9 (Too) + 3 Lo (T'00T00)ec ,

#® Note that:
x All operators at non-zero distance
x Number of EMT on the two sides different

* On the lattice they can be imposed to fix the renormalization of 7},,,

® These WIs implies that the total energy and momentum distributions are related
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Ward identities at non-zero shift

® \When & # 0 odd derivatives in the &, do not vanish anymore, and new interesting WIs
hold. The first non-trivial one is

which implies

#® By deriving twice with respect to the &;.

L — i &
(Tor)e = O;k > (Toi Toj)e. . {5@' - %] :
]

which implies for instance

_%]
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A finer scan in the temperature on the lattice
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® A finer scan in the temperature values become possible at fixed lattice spacing

V() () () ()
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Non-perturbative renormalization @f,, (traceless components)

® On the lattice translational invariance is broken down to a discrete group and
standard discretizations of 7},,, acquire finite ultraviolet renormalizations

#® We focus here on the SU(3) Yang—Mills, but

the analysis applies to other theories as well
[Caracciolo et al. 88, 90]

Lo 0 0O

Lo 5150 0
TR = 7 Ty, Vir — 2 240
T g 0 0 L O
T(%_TE:ZTZT (Too — T11) 0 0O 0L

® There is a great freedom in choosing the renormalization conditions. A possibility is

3 (To1) vy

2 = — :
T 2(Too) vy — (Th1) vir

while Z7 can be determined in finite volume from (see also Robaina’s talk

Zp=— L O v
Lo(Tok) vy Ok
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Strategy to compute entropy density and specific heat

® Once Zr has been computed in a small volume (for instance), the entropy density can be
computed as (£ # 0)

 ZrLo(1+ &%)3/2
Sk

thanks to the misalignment of the lattice axes with respect to the periodic directions

S =

<T0k’ > Vsbe

® Analogously the specific heat is given by (£, and L, chosen to be equal)

Cy

3 (To1 T02>Vsbc7c + &* (Tor T01>Vsbc
s & (Ty T02>Vb - (To1 To1>vb

,C

C

Cc’ Cc

® Note that:
x No ultraviolet-divergent power subtraction needed

x Renormalization constant fixed non-perturbatively by WIs
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Entropy density from the response to the shift

® As we have seen in the continuum

N
s=— lim ——=1InZ(Lo,§&)
V—oo 652 £=0

® On the lattice the only difference is the discrete derivative

s =—— lim lim
T2 V—ooa—0n2a2V

9 IH{Z(LO,{O,O,nza/LO})}
Z(Lo, {0,0,0})

with n, being kept fixed when a — 0
® Note that:

x No ultraviolet renormalization
x Finite volume effects exponentially small

* Discretization effects O(a?) once action improved
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Conclusions and outlook (1)

® [ orentz invariance implies a great degree of redundancy in defining a relativistic thermal
theory in the Euclidean path-integral formalism

#® In the thermodynamic limit, the orientation of the compact periodic direction with respect
to the spatial axes can be chosen at will and only its length is physically relevant

f(LO\/l—}—gQ) = — lim 1V In Z(Lg, &)

V —o0 LO

® The redundancy in the description implies that the total energy and momentum
distributions in the canonical ensemble are related

® For a finite-size system, the lengths of the box dimensions break this invariance. Being a
soft breaking, however, interesting exact Ward ldentities survive

® If the lightest screening mass M # 0, leading finite-size corrections exponentially small
in (M L) as in the standard case
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Conclusions and outlook (1)

® \When the theory is regularized on a lattice, the overall orientation of the periodic directions
with respect to the lattice coordinate system affects renormalized observables at the level
of lattice artifacts

® As the cutoff is removed, the artifacts are suppressed by a power of the lattice spacing.
They turn out to be rather small: at the level of per-mille in the step-scaling function of
the entropy density [L. G., M. Pepe Poster Session B; see also H. B. Meyer, D. Rattaik session 1C.]

® The flexibility in the lattice formulation added by the introduction of a triplet £ of
(renormalized) parameters has interesting consequences:
x A finer scan of the temperature value
* WIs to renormalize non-perturbatively 7},,

x Simpler ways to compute thermodynamic potentials

_ ZrLo(1+ £2)3/2
Ek

S —

<T0k > Vsbe

® It is also intriguing the fact that thermodynamic potentials can be directly inferred from
the response of the partition function to the shift in the boundary conditions
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Ward identities in a finite spatial box (lI)

® The commutator of boost with momentum

A

Ky, pe) =4H i BT -

is expressed in the Euclidean by the WIs

/8R do () (K .0k (@) Tok (Y0) O1 - .. Onde = (Too(yo) O1 - .. On)e

when the O; are localized external fields.

® In a 4D box boost transformations are incompatible with (periodic) boundary conditions.
WIs associated with SO(4) rotations must be modified by finite-size contributions

® The finite-volume theory is translational invariant, and it has a conserved 7},,,. Modified
WIs associated to boosts constructed from those associated to translational invariance

Lo (Tox(0) Tok () Vepe.e — L (Tor(wi) Tok (2))vepee = (T00) — (Thk) Voo e

L. Giusti — Lattice 2013 — August 2013 - p. 14/14



	Outline
	Outline

	Path integrals with shifted boundary conditions: infinite-volume limit (I)
	Path integrals with shifted boundary conditions: infinite-volume limit (I)
	Path integrals with shifted boundary conditions: infinite-volume limit (I)
	Path integrals with shifted boundary conditions: infinite-volume limit (I)

	Path integrals with shifted boundary conditions: infinite-volume limit (II)
	Thermal field theory in a moving frame
	Ward identities for correlators of ${overline T}_{mu 
u }$ at zero shift
	Ward identities at non-zero shift
	A finer scan in the temperature on the lattice
	Non-perturbative renormalization of $T_{mu 
u }$ (traceless components)
	Strategy to compute entropy density and specific heat
	Entropy density from the response to the shift
	Conclusions and outlook (I)
	Conclusions and outlook (II)
	Ward identities in a finite spatial box (III)

