D and *D*_s decay constants from a chiral analysis on HISQ ensembles

Speaker: Claude Bernard Washington University St. Louis, USA

Fermilab Lattice and MILC Collaborations

Authors: A. Bazavov, C. Bernard, C. Bouchard, C. DeTar, D. Du,
A.X. El-Khadra, J. Foley, E.D. Freeland, E. Gamiz, S. Gottlieb,
U.M. Heller, J. Komijani*, J. Kim, A.S. Kronfeld, J. Laiho,
L. Levkova, P.B. Mackenzie, E.T. Neil, M. Oktay, J.N. Simone,
R.L. Sugar, D. Toussaint, R.S. Van de Water, R. Zhou.

*Ph.D thesis research

Lattice 2013, Mainz, Germany

MILC HISQ 2+1+1 Ensembles

- For higher precision than available with the asqtad action, we have moved to the HISQ action [Follana et al. [HPQCD], PRD 75 (2007) 054502].
 - Reduced $O(\alpha_s a^2)$ and $O(\alpha_s^2 a^2)$ [taste-violation] errors with respect to asquad.
 - $\alpha_s (am_c)^2$, $(am_c)^4$ errors also reduced.
 - Non-relativistic expansion says that m_c errors further reduced in heavy-light physics by powers of charm quark velocity.
 - \Rightarrow treat charm with same relativistic action as light quarks.
 - Ensembles include charm sea quarks:
 - Although error of quenching charm is probably quite small in most cases, at today's level of precision it is safer to include charm in the sea; doesn't cost much.

D meson decay constants with HISQ

- Advantage of HISQ is that charm may be treated with same action as light quarks.
 - avoid renormalization errors and many tuning issues.
 - share to some degree the small statistical errors of staggered light pseudoscalars.
 - how large a value of m_c a may reasonably be used is not obvious a priori.
 - HPQCD has included HISQ valence on asqtad lattices as coarse as a=0.15 fm, for which $m_c a = 0.85$.
 - We consider HISQ on HISQ up to a=0.15 fm also.
 - Power counting estimate is that errors are ~5%, with further reduction by dimensionless factors possible.
 - We currently are keeping a=0.15 fm data in central values, but compare with fits dropping it in systematic error estimate.

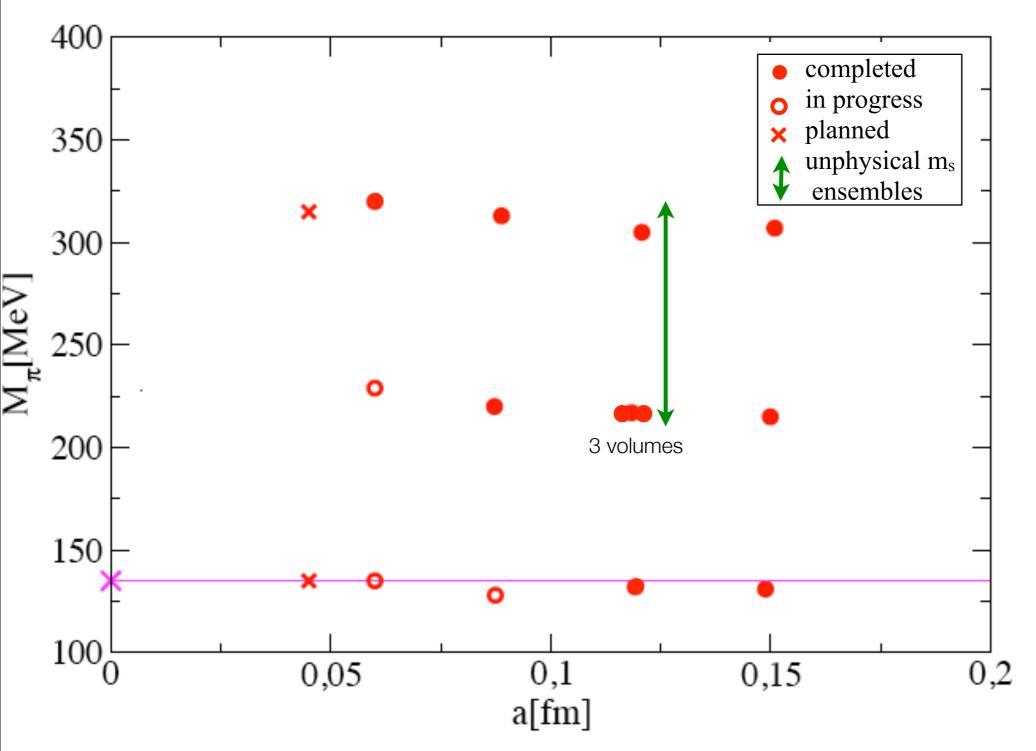
Ensembles Used

Ensembles with physical strange quark mass:

$\approx a \; (\text{fm})$	m_l/m_s	$N_s^3 \times N_t$	$M_{\pi}L$	$M_{\pi} ({\rm MeV})$	$N_{\rm lats}$
0.15	1/5	$16^3 \times 48$	3.78	306.9(5)	1020
0.15	1/10	$24^3 \times 48$	3.99	214.5(2)	1000
0.15	1/27	$32^3 \times 48$	3.30	131.0(1)	1000
0.12	1/5	$24^3 \times 64$	4.54	305.3(4)	1040
0.12	1/10	$24^3 \times 64$	3.22	218.1(4)	1020
0.12	1/10	$32^3 \times 64$	4.29	216.9(2)	1000
0.12	1/10	$40^3 \times 64$	5.36	217.0(2)	1032
0.12	1/27	$48^3 \times 64$	3.88	131.7(1)	1000
0.09	1/5	$32^3 \times 96$	4.50	312.7(6)	1012
0.09	1/10	$48^3 \times 96$	4.71	220.3(2)	1000
0.09	1/27	$64^3 \times 96$	3.66	128.2(1)	872
0.06	1/5	$48^3 \times 144$	4.51	319.3(5)	1016
0.06	1/10	$64^3 \times 144$	4.25	229.2(4)	837
0.06	1/27	$96^{3} \times 192$	3.95	135.5(2)	586

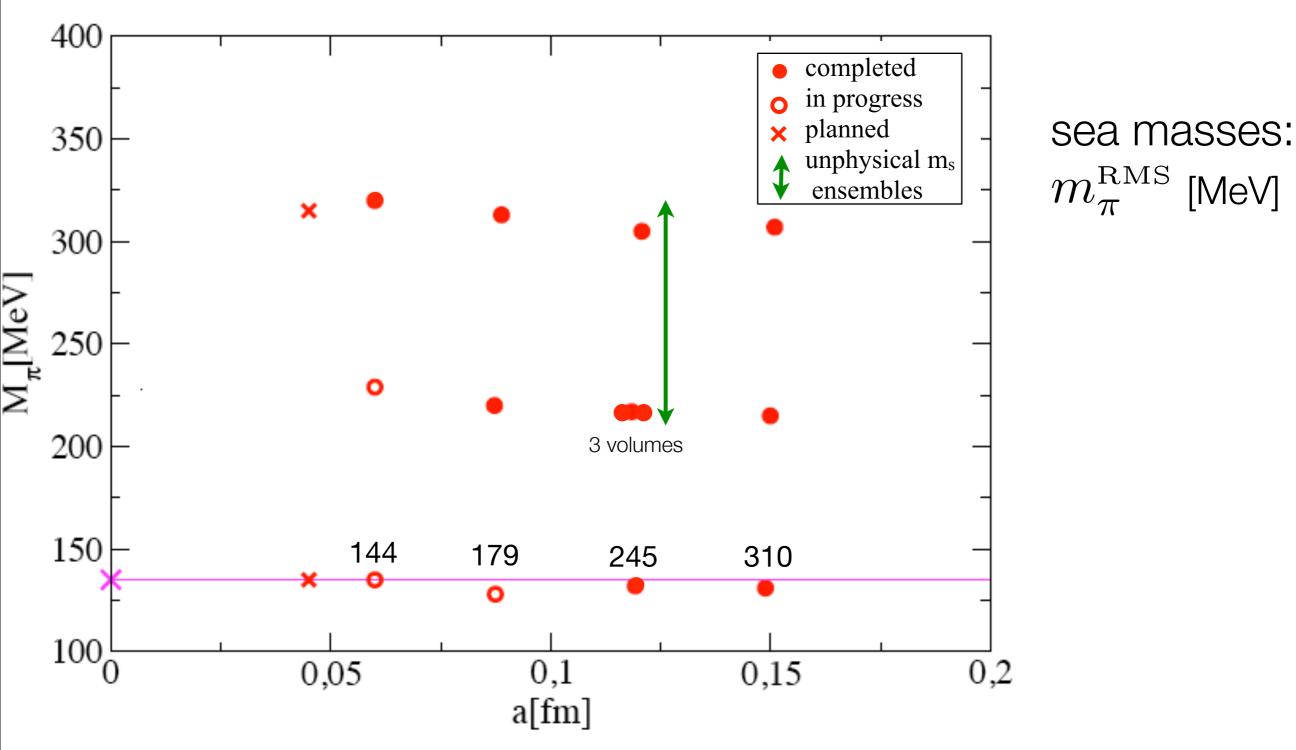
Red = ensemble generation still in progress

Ensembles Used


Ensembles with strange quark mass lighter than physical:

$\approx a \; (\mathrm{fm})$	m_l/m_s	m_s'/m_s	$N_s^3 \times N_t$	$N_{\rm lats}$
0.12	0.10	0.10	$32^3 \times 64$	1020
0.12	0.10	0.25	$32^3 \times 64$	1020
0.12	0.10	0.45	$32^3 \times 64$	1020
0.12	0.10	0.60	$32^3 \times 64$	1020
0.12	0.25	0.25	$24^3 \times 64$	1020
0.12	0.20	0.60	$24^3 \times 64$	1020
0.12	0.175	0.45	$32^3 \times 64$	1020

(These ensembles are not crucial to D decay project, but are useful for adjusting for mistunings in strange (and light) masses.)


MILC HISQ Ensembles

 $N_f = 2+1+1$ Hisq MILC ensembles

MILC HISQ Ensembles

 $N_f = 2+1+1$ Hisq MILC ensembles

Valence Masses Used

β	am_l	am_S	am_c	light masses m_x	heavy
	, i i i i i i i i i i i i i i i i i i i				mass m_y
				(m_x/m_s)	(m_y/m_c)
5.80	0.013	0.065	0.838	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
5.80	0.0064	0.064	0.828	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
5.80	0.00235	0.0647	0.831	0.036, 0.07, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.00	0.0102	0.0509	0.635	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.00	0.00507	0.0507	0.628	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.00	0.00507	0.0507	0.628	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.00	0.00507	0.0507	0.628	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.00	0.00507	0.0304	0.628	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.00	0.00507	0.00507	0.628	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.00	0.00184	0.0507	0.628	0.036, 0.073, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.30	0.0074	0.037	0.440	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.30	0.00363	0.0363	0.430	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.30	0.0012	0.0363	0.432	0.033, 0.066, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.72	0.0048	0.024	0.286	0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.72	0.0024	0.024	0.286	0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.72	0.0008	0.022	0.260	0.036, 0.068, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0

Valence Masses Used

β	am_l	am_S	am_c	light masses m_x	heavy
	, i i i i i i i i i i i i i i i i i i i				mass m_y
				(m_x/m_s)	(m_y/m_c)
5.80	0.013	0.065	0.838	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
5.80	0.0064	0.064	0.828	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
5.80	0.00235	0.0647	0.831	0.036, 0.07, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.00	0.0102	0.0509	0.635	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.00	0.00507	0.0507	0.628	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.00	0.00507	0.0507	0.628	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.00	0.00507	0.0507	0.628	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.00	0.00507	0.0304	0.628	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.00	0.00507	0.00507	0.628	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.00	0.00184	0.0507	0.628	0.036, 0.073, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.30	0.0074	0.037	0.440	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.30	0.00363	0.0363	0.430	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.30	0.0012	0.0363	0.432	0.033, 0.066, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.72	0.0048	0.024	0.286	0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.72	0.0024	0.024	0.286	0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0
6.72	0.0008	0.022	0.260	0.036, 0.068, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0	0.9, 1.0

Physical sea mass ensembles have physical valence masses. (Volumes

chosen appropriately.)

Valence Masses Used

β	am_l	am_s	am_{C}	light masses n	n_x heavy
					mass m_y
				$(m_x/m$	(m_y/m_c)
5.80	0.013	0.065	0.838	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1	0.9,1.0
5.80	0.0064	0.064	0.828	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1	0.9,1.0
5.80	0.00235	0.0647	0.831	0.036, 0.07, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1	0.9,1.0
6.00	0.0102	0.0509	0.635	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1	0.9,1.0
6.00	0.00507	0.0507	0.628	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1	0.9,1.0
6.00	0.00507	0.0507	0.628	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1	L.0 0.9,1.0
6.00	0.00507	0.0507	0.628	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1	L.0 0.9,1.0
6.00	0.00507	0.0304	0.628	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1	0.9,1.0
6.00	0.00507	0.00507	0.628	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1	0.9,1.0
6.00	0.00184	0.0507	0.628	0.036, 0.073, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1	0.9,1.0
6.30	0.0074	0.037	0.440	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1	0.9,1.0
6.30	0.00363	0.0363	0.430	0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1	0.9,1.0
6.30	0.0012	0.0363	0.432	0.033, 0.066, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1	0.9,1.0
6.72	0.0048	0.024	0.286	0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1	0.9,1.0
6.72	0.0024	0.024	0.286	0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1	0.9,1.0
6.72	0.0008	0.022	0.260	0.036, 0.068, 0.1, 0.15, 0.2, 0.3, 0.4, 0.6, 0.8, 1	0.9,1.0
	•			· · · · · · · · · · · · · · · · · · ·	1
				Physical sea mass	Allows correction
			for mistuning in		

valence masses. (Volumes

chosen appropriately.)

C. Bernard, Lattice 2013, 7/31/13 7

m_c.

- ◆ J. Komijani and CB have worked out appropriate heavymeson chiral perturbation theory when both light and heavy quarks are staggered: "Heavy-meson, rooted, all-staggered chiral perturbation theory" (HMrAS XPT) [arXiv:1211.0785, and to appear].
 - Used here to fit all heavy-light data and interpolate/extrapolate to physical quark masses and to continuum.
 - Useful also for understanding the pattern of taste-symmetry breaking in the heavy-light meson masses [MILC: A. Bazavov et al., PRD 87 054505 (2013)].

- ◆ An alternative, simpler analysis that avoids XPT and focuses on the physical-mass ensembles will be presented by Doug Toussaint tomorrow (session 8C).
 - That analysis also includes light-light mesons and provides the absolute scale setting (through f_{π}) and physical quark masses needed here.
 - At the cost of significant complications, the χ PT analysis allows us to use all our data (not just physical-mass ensembles), thereby reducing statistical errors, and to help control the continuum extrapolation.
 - Ultimately will extend the χ PT analysis to the light-light sector to have a completely self-contained version of the analysis.

 NLO form in HMrAS χPT, including hyperfine and flavor splittings in heavy-light masses:

$$\begin{split} \frac{f_{D_{x\Xi}}\sqrt{M_{D_{x\Xi}}}}{\kappa} &= 1 + \frac{1}{16\pi^2 f^2} \frac{1}{2} \Biggl\{ -\frac{1}{16} \sum_{S,\Xi'} \ell(m_{Sx,\Xi'}^2) \\ &- \frac{1}{3} \sum_{j \in \mathcal{M}_I^{(3,x)}} \frac{\partial}{\partial m_{X,I}^2} \left[R_j^{[3,3]}(\mathcal{M}_I^{(3,x)}; \mu_I^{(3)}) \ell(m_j^2) \right] \\ &- \left(a^2 \delta'_V \sum_{j \in \mathcal{M}_V^{(4,x)}} \frac{\partial}{\partial m_{X,V}^2} \left[R_j^{[4,3]}(\mathcal{M}_V^{(4,x)}; \mu_V^{(3)}) \ell(m_j^2) \right] + [V \to A] \right) \\ &- 3g_{\pi}^2 \frac{1}{16} \sum_{S,\Xi'} J(m_{Sx,\Xi'}, \Delta^* + \delta_{Sx}) \\ &- g_{\pi}^2 \sum_{j \in \mathcal{M}_I^{(3,x)}} \frac{\partial}{\partial m_{X,I}^2} \left[R_j^{[3,3]}(\mathcal{M}_I^{(3,x)}; \mu_I^{(3)}) J(m_j, \Delta^*) \right] \\ &- 3g_{\pi}^2 \left(a^2 \delta'_V \sum_{j \in \mathcal{M}_V^{(4,x)}} \frac{\partial}{\partial m_{X,V}^2} \left[R_j^{[4,3]}(\mathcal{M}_V^{(4,x)}; \mu_V^{(3)}) J(m_j, \Delta^*) \right] + [V \to A] \right) \Biggr\} \\ &+ c_s (m_u + m_d + m_s) + c_v m_x + c_{a,\Xi} a^2 . \end{split}$$

 NLO form in HMrASχPT, including hyperfine and flavor splittings in heavy-light masses:

$$\frac{f_{D_{x\Xi}}\sqrt{M_{D_{x\Xi}}}}{\kappa} = 1 + \frac{1}{16\pi^2 f^2} \frac{1}{2} \Biggl\{ -\frac{1}{16} \sum_{\substack{S,\Xi'}} (m_{S_{x,\Xi'}}^{(3,x)}) from tadpoles: from tadpoles:
- \frac{1}{3} \sum_{j \in \mathcal{M}_{I}^{(3,x)}} \frac{\partial}{\partial m_{X,I}^{2}} \Biggl[R_{j}^{[3,3]}(\mathcal{M}_{I}^{(3,x)}; \mu_{I}^{(3)}) \ell(m_{j}^{2}) \Biggr]
- \left(a^2 \delta'_{V} \sum_{j \in \mathcal{M}_{V}^{(4,x)}} \frac{\partial}{\partial m_{X,V}^{2}} \Biggl[R_{j}^{[4,3]}(\mathcal{M}_{V}^{(4,x)}; \mu_{V}^{(3)}) \ell(m_{j}^{2}) + [V \to A] \Biggr) \Biggr]
- 3g_{\pi}^{2} \frac{1}{16} \sum_{\substack{S,\Xi'}} J(m_{\delta x,\Xi'}, \Delta^{*} + \delta_{\delta x}) \Biggr]
- g_{\pi}^{2} \sum_{j \in \mathcal{M}_{I}^{(3,x)}} \frac{\partial}{\partial m_{X,I}^{2}} \Biggl[R_{j}^{[3,3]}(\mathcal{M}_{I}^{(3,x)}; \mu_{I}^{(3)}) J(m_{j}, \Delta^{*}) \Biggr]
- 3g_{\pi}^{2} \Biggl\{ a^{2} \delta'_{V} \sum_{j \in \mathcal{M}_{V}^{(4,x)}} \frac{\partial}{\partial m_{X,V}^{2}} \Biggl[R_{j}^{[4,3]}(\mathcal{M}_{V}^{(4,x)}; \mu_{V}^{(3)}) J(m_{j}, \Delta^{*}) \Biggr] + [V \to A] \Biggr) \Biggr\}
+ c_{s}(m_{u} + m_{d} + m_{s}) + c_{v}m_{x} + c_{a,\Xi}a^{2}.$$

 NLO form in HMrAS χPT, including hyperfine and flavor splittings in heavy-light masses:

$$\begin{split} \frac{f_{D_{x\Xi}}\sqrt{M_{D_{x\Xi}}}}{\kappa} &= 1 + \frac{1}{16\pi^2 f^2} \frac{1}{2} \Biggl\{ -\frac{1}{16} \sum_{s,\Xi'} \ell(m_{8x,\Xi'}^2) \\ &- \frac{1}{3} \sum_{j \in \mathcal{M}_I^{(3,x)}} \frac{\partial}{\partial m_{X,I}^2} \left[R_j^{[3,3]}(\mathcal{M}_I^{(3,x)}; \mu_I^{(3)}) \ell(m_j^2) \right] \\ &- \left(a^2 \delta'_V \sum_{j \in \mathcal{M}_V^{(4,x)}} \frac{\partial}{\partial m_{X,V}^2} \left[R_j^{[4,3]}(\mathcal{M}_V^{(4,x)}; \mu_V^{(3)}) \ell(m_j^2) \right] + [V \to A] \right) \end{aligned}$$
chiral logs
rom sunset
orgaphs
 $- g_\pi^2 \sum_{j \in \mathcal{M}_I^{(3,x)}} \frac{\partial}{\partial m_{X,I}^2} \left[R_j^{[3,3]}(\mathcal{M}_I^{(3,x)}; \mu_I^{(3)}) \int (m_j, \Delta^*) \right]$
 $- 3g_\pi^2 \left(a^2 \delta'_V \sum_{j \in \mathcal{M}_V^{(4,x)}} \frac{\partial}{\partial m_{X,V}^2} \left[R_j^{[4,3]}(\mathcal{M}_V^{(4,x)}; \mu_V^{(3)}) \int (m_j, \Delta^*) \right] + [V \to A] \right) \Biggr\}$
 $+ c_s(m_u + m_d + m_s) + c_v m_x + c_{a,\Xi} a^2.$

 NLO form in HMrAS χPT, including hyperfine and flavor splittings in heavy-light masses:

$$\begin{split} \frac{f_{D_{x\Xi}}\sqrt{M_{D_{x\Xi}}}}{\kappa} &= 1 + \frac{1}{16\pi^2 f^2} \frac{1}{2} \Biggl\{ -\frac{1}{16} \sum_{\mathcal{S},\Xi'} \ell(m_{\mathcal{S}x,\Xi'}^2) \\ &- \frac{1}{3} \sum_{j \in \mathcal{M}_I^{(3,x)}} \frac{\partial}{\partial m_{X,I}^2} \left[R_j^{[3,3]}(\mathcal{M}_I^{(3,x)}; \mu_I^{(3)})\ell(m_j^2) \right] \\ &- \left(a^2 \delta'_V \sum_{j \in \mathcal{M}_V^{(4,x)}} \frac{\partial}{\partial m_{X,V}^2} \left[R_j^{[4,3]}(\mathcal{M}_V^{(4,x)}; \mu_V^{(3)})\ell(m_j^2) \right] + [V \to A] \right) \\ &- 3g_\pi^2 \frac{1}{16} \sum_{\mathcal{S},\Xi'} J(m_{\mathcal{S}x,\Xi'} \bigtriangleup^* + \delta_{\mathcal{S}x}) \\ &- g_\pi^2 \sum_{j \in \mathcal{M}_I^{(3,x)}} \frac{\partial}{\partial m_{X,I}^2} \left[R_j^{[3,3]}(\mathcal{M}_I^{(3,x)}; \mu_I^{(3)})J(m_j \bigtriangleup^*) \right] \\ &- 3g_\pi^2 \left(a^2 \delta'_V \sum_{j \in \mathcal{M}_V^{(4,x)}} \frac{\partial}{\partial m_{X,V}^2} \left[R_j^{[4,3]}(\mathcal{M}_V^{(4,x)}; \mu_V^{(3)})J(m_j \bigtriangleup^*) \right] + [V \to A] \right) \Biggr\} \\ &+ c_s (m_u + m_d + m_s) + c_v m_x + c_{a,\Xi} a^2 . \end{split}$$

 NLO form in HMrAS χPT, including hyperfine and flavor splittings in heavy-light masses:

$$\begin{split} \frac{f_{D_{x\Xi}}\sqrt{M_{D_{x\Xi}}}}{\kappa} &= 1 + \frac{1}{16\pi^2 f^2} \frac{1}{2} \Biggl\{ -\frac{1}{16} \sum_{\mathbf{S}, \Xi'} \ell(m_{\mathbf{S}_{x}, \Xi'}^2) \\ \text{residue} \\ \text{functions for} \\ \text{neutral light} \\ \text{propagators} &= -\frac{1}{3} \sum_{j \in \mathcal{M}_{I}^{(3,x)}} \frac{\partial}{\partial m_{X,I}^2} \left(R_{j}^{[3,3]}(\mathcal{M}_{I}^{(3,x)}; \mu_{I}^{(3)}) \ell(m_{j}^2) \right] \\ &- \left(a^2 \delta'_V \sum_{j \in \mathcal{M}_{V}^{(4,x)}} \frac{\partial}{\partial m_{X,V}^2} \left(R_{j}^{[4,3]}(\mathcal{M}_{V}^{(4,x)}; \mu_{V}^{(3)}) \ell(m_{j}^2) \right] + [V \to A] \right) \\ &- 3g_{\pi}^2 \frac{1}{16} \sum_{\mathbf{S}, \Xi'} J(m_{\mathbf{S}_{x}, \Xi'}, \Delta^* + \delta_{\mathbf{S}_{x}}) \\ &- g_{\pi}^2 \sum_{j \in \mathcal{M}_{I}^{(3,x)}} \frac{\partial}{\partial m_{X,I}^2} \left(R_{j}^{[3,3]}(\mathcal{M}_{I}^{(3,x)}; \mu_{I}^{(3)}) f(m_{j}, \Delta^*) \right] \\ &- 3g_{\pi}^2 \left(a^2 \delta'_V \sum_{j \in \mathcal{M}_{V}^{(4,x)}} \frac{\partial}{\partial m_{X,V}^2} \left(R_{j}^{[4,3]}(\mathcal{M}_{V}^{(4,x)}; \mu_{V}^{(3)}) f(m_{j}, \Delta^*) \right] + [V \to A] \right) \Biggr\} \\ &+ c_s(m_u + m_d + m_s) + c_v m_x + c_{a,\Xi} a^2 \,. \end{split}$$

 NLO form in HMrAS χPT, including hyperfine and flavor splittings in heavy-light masses:

$$\begin{split} \frac{f_{D_{x\Xi}}\sqrt{M_{D_{x\Xi}}}}{\kappa} &= 1 + \frac{1}{16\pi^2 f^2} \frac{1}{2} \Biggl\{ -\frac{1}{16} \sum_{S,\Xi'} \ell(m_{\mathbb{S}x,\Xi'}^2) \\ &- \frac{1}{3} \sum_{j \in \mathcal{M}_I^{(3,x)}} \frac{\partial}{\partial m_{X,I}^2} \left[R_j^{[3,3]}(\mathcal{M}_I^{(3,x)}; \mu_I^{(3)}) \ell(m_j^2) \right] \\ &- \left(a^2 \delta'_V \sum_{j \in \mathcal{M}_V^{(4,x)}} \frac{\partial}{\partial m_{X,V}^2} \left[R_j^{[4,3]}(\mathcal{M}_V^{(4,x)}; \mu_V^{(3)}) \ell(m_j^2) \right] + [V \to A] \right) \\ &- 3g_{\pi}^2 \frac{1}{16} \sum_{S,\Xi'} J(m_{\mathbb{S}x,\Xi'}, \Delta^* + \delta_{\mathbb{S}x}) \\ &- g_{\pi}^2 \sum_{j \in \mathcal{M}_I^{(3,x)}} \frac{\partial}{\partial m_{X,I}^2} \left[R_j^{[3,3]}(\mathcal{M}_I^{(3,x)}; \mu_I^{(3)}) J(m_j, \Delta^*) \right] \\ &- 3g_{\pi}^2 \left(a^2 \delta'_V \sum_{j \in \mathcal{M}_V^{(4,x)}} \frac{\partial}{\partial m_{X,V}^2} \left[R_j^{[4,3]}(\mathcal{M}_V^{(4,x)}; \mu_V^{(3)}) J(m_j, \Delta^*) \right] + [V \to A] \right) \Biggr\} \\ &+ c_s (m_u + m_d + m_s) + c_v m_x + c_{a,\Xi} a^2 \end{split}$$

• Convenient to redefine LECs in terms of natural dimensionless factors of χ PT:

$$c_{s}(m_{u} + m_{d} + m_{s}) + c_{v}m_{x} + c_{a}a^{2}$$

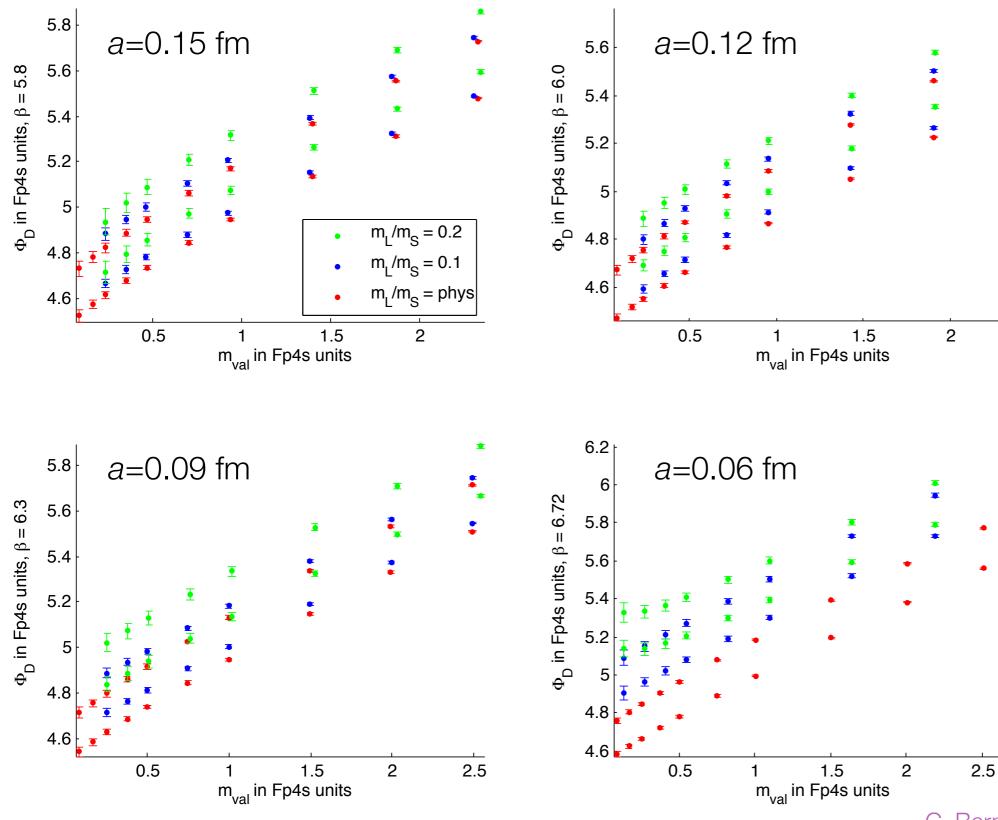
$$\rightarrow L_{s}(x_{u} + x_{d} + x_{s}) + L_{v}(x_{x}) + L_{a}\frac{x_{\bar{\Delta}}}{2}.$$

$$x_{u,d,s,x} \equiv \frac{4B}{16\pi^{2}f_{\pi}^{2}}m_{u,d,s,x}, \quad x_{\bar{\Delta}} \equiv \frac{2}{16\pi^{2}f_{\pi}^{2}}\bar{\Delta},$$

- where B is the LEC that gives pion mass: $m_{\pi}^2 = B(m_u + m_d)$, and $\overline{\Delta}$ is the mean-squared pion taste splitting.
- With these definitions, LECs are expected to be O(1).

- Have very precise data (~0.2% stat errors), with ~200--366 points, depending on cuts.
- Need to add higher-order analytic terms to the fit function:
 - "Generic" *a*-dependence of NLO LECs (a NNLO effect).
 - e.g., $L_s \left(x_u + x_d + x_s \right) \rightarrow \left(L_s + L_{s\delta} \alpha_S a^2 \right) \left(x_u + x_d + x_s \right)$.
 - So add parameters $\kappa_{\delta}, L_{s\delta}, L_{v\delta}, \delta'_{A\delta}, \delta'_{V\delta}, g^2_{\pi\delta}, L_{a\delta}$.
 - \bullet NNLO and NNNLO terms in quark masses needed to fit masses ~m_{s} :

$q_1(x_x^2)$	$c_1(x_x)^3$
$q_2(2x_l+x_s)^2$	$c_2(x_x)(2x_l+x_s)^2$
$q_3(2x_l + x_s)(x_v)$	$c_3(x_x)(2x_l^2 + x_s^2)$
$q_4(2x_l^2 + x_s^2)$	$c_4(x_x)^2(2x_l+x_s)$
	$c_5(2x_l+x_s)^3$
	$c_6(2x_l+x_s)(2x_l^2+x_s^2)$
	$c_7(2x_l^3 + x_s^3)$

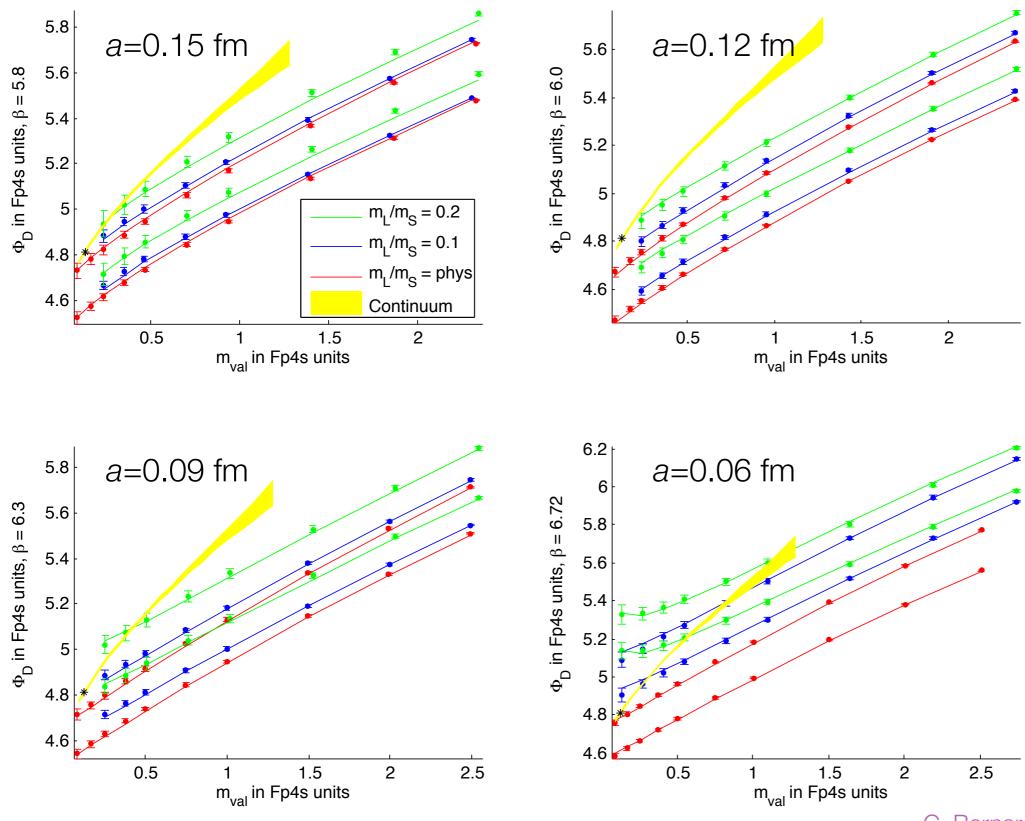

- ✦ Because of mistunings in m_c , and especially if $m_c = 0.9 m_c^{\text{phys}}$ valence masses are included, need higher order HQET terms.
 - multiply by $1 + c_{m_c1}(\Lambda_{\rm QCD}/m_c) + c_{m_c2}(\Lambda_{\rm QCD}/m_c)^2$, where we take $\Lambda_{\rm QCD} \sim 350$ MeV.

If β = 5.8 (a = 0.15 fm) ensembles are included, additional discretization correction for large am_c needed, although difficult to distinguish α_s(am_c)² from (am_c)⁴.

Lattice Scale

- ◆ Relative lattice scales are determined by f_{p4s} , the decay constant when valence masses are 0.4 m_s^{phys} .
 - (sea masses are physical).
- Has very small statistical errors (comparable to that of Symanzik or Wilson flow w₀ when computed on the same numbers of configurations).
- Absolute scale is set by computing f_{p4s}/f_{π} , extrapolated to the continuum.

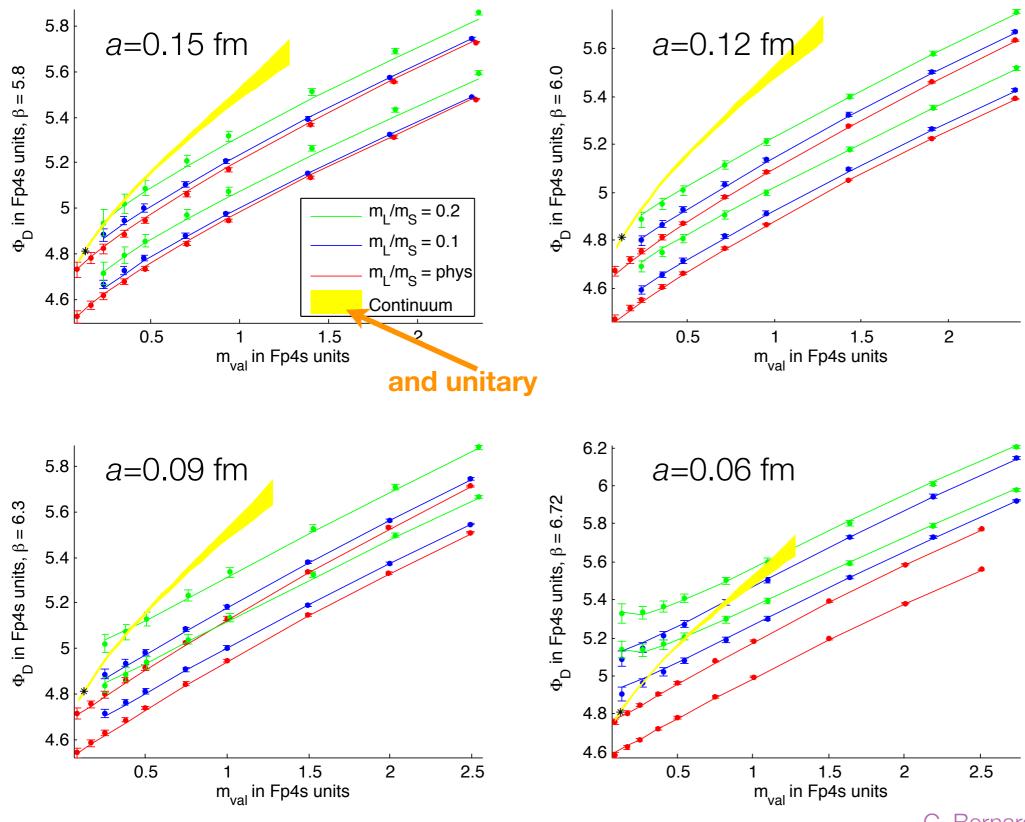
Lattice Data



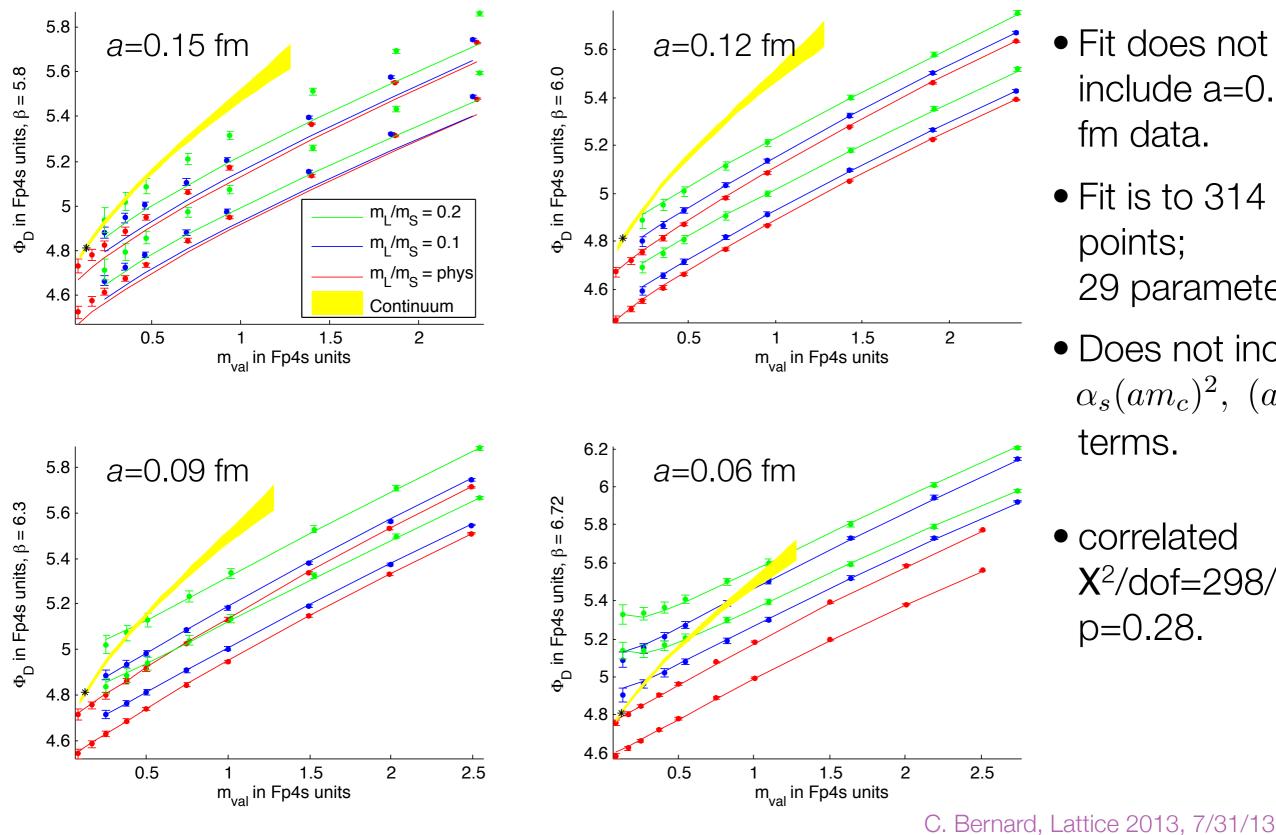
• For each color,

1

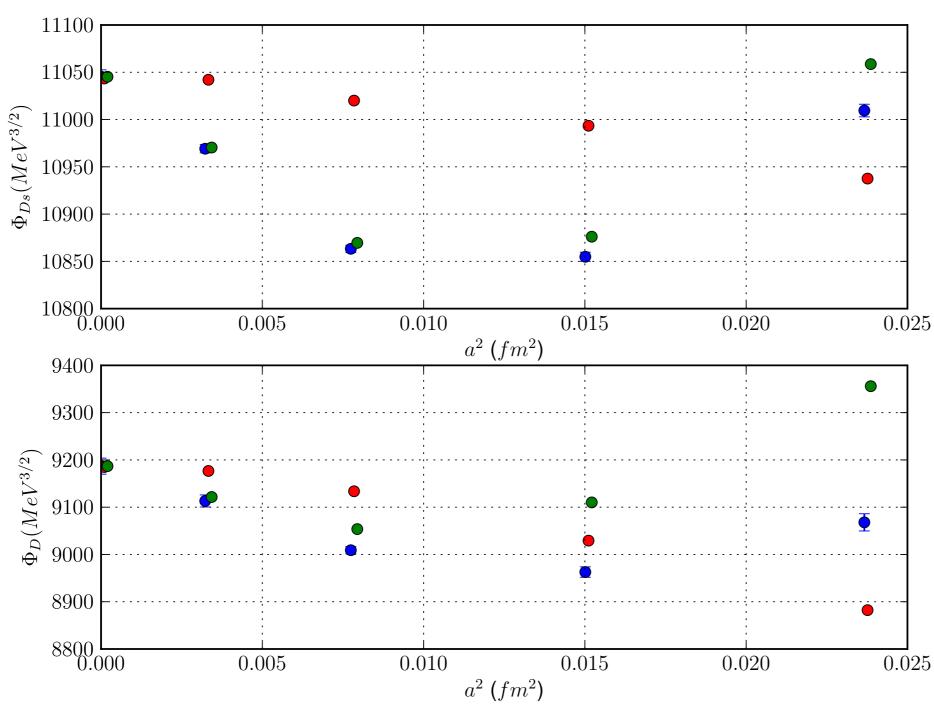
- higher points have $m_c = m_c^{phys}$; lower points have $m_c = 0.9 m_c^{phys}$.
- Data for unphysical *m*s ensembles (as well as multiple a=0.12 fm volumes) not
- shown, but included in fits.
- 366 data points, total.


Central Chiral Fit

- Fit is to all 366 data points; 31 parameters.
- correlated
 X²/dof=325/335;
 p=0.64.
- Black burst shows continuumextrapolated physical result.
- Statistical errors from jackknife (including all inputs) are tiny.


C. Bernard, Lattice 2013, 7/31/13

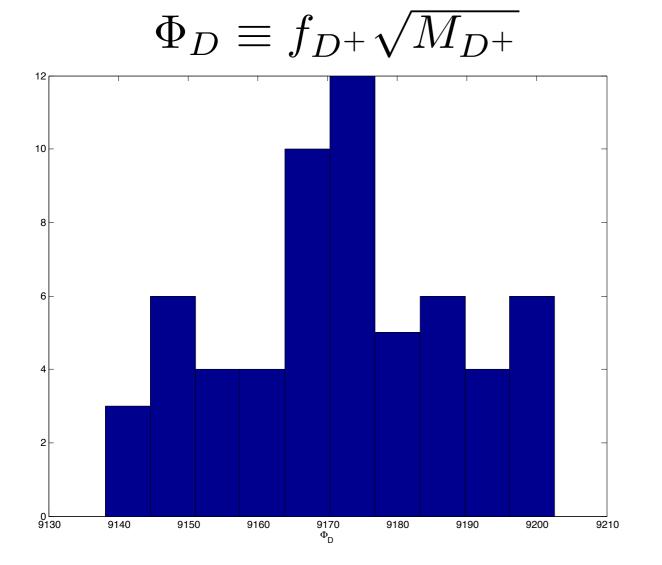
Central Chiral Fit


- Fit is to all 366 data points; 31 parameters.
- correlated
 X²/dof=325/335;
 p=0.64.
- Black burst shows continuumextrapolated physical result.
- Statistical errors from jackknife (including all inputs) are tiny.

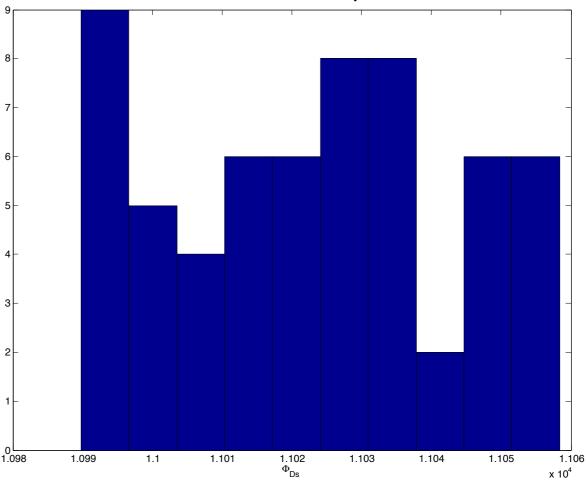
An Alternative Chiral Fit

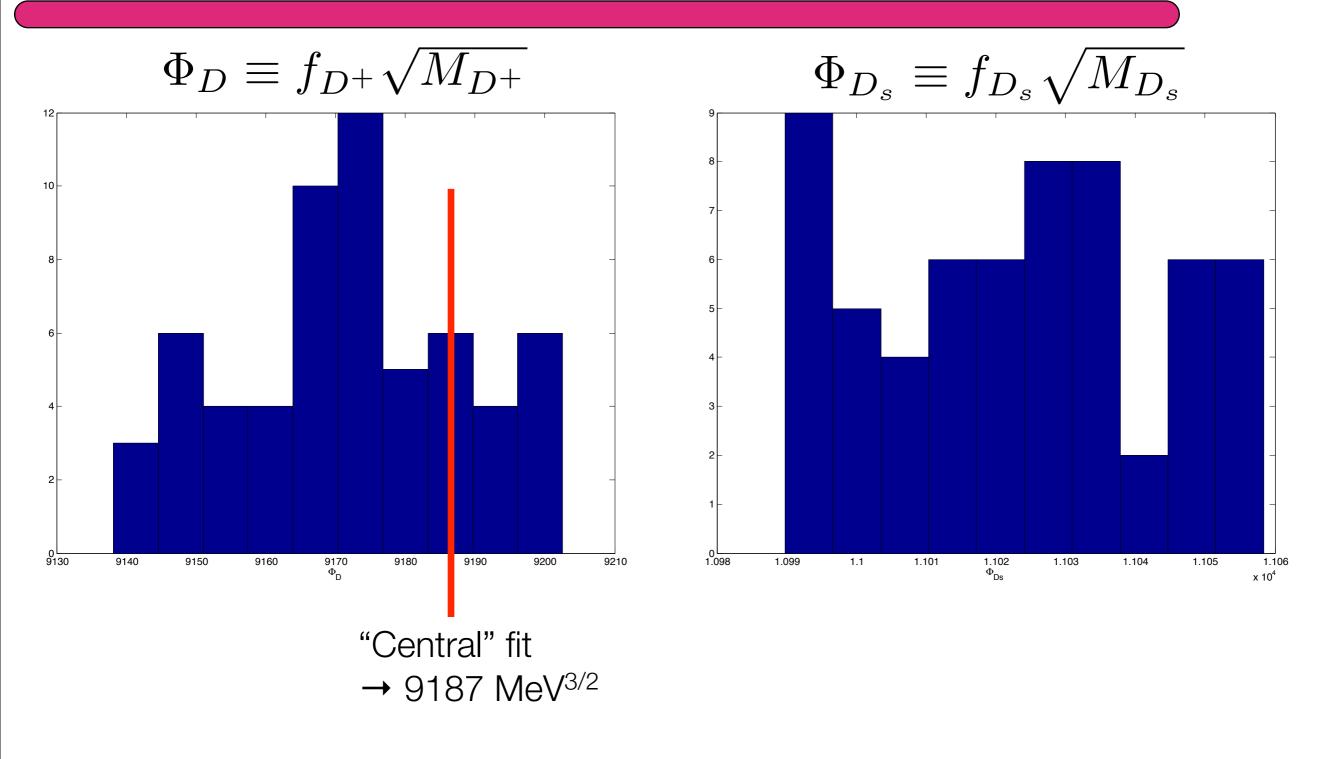
- Fit does not include a=0.15 fm data.
- Fit is to 314 data points; 29 parameters.
- Does not include $\alpha_s(am_c)^2, \ (am_c)^4$ terms.
- correlated X²/dof=298/285; p=0.28.

Dependence on *a*²

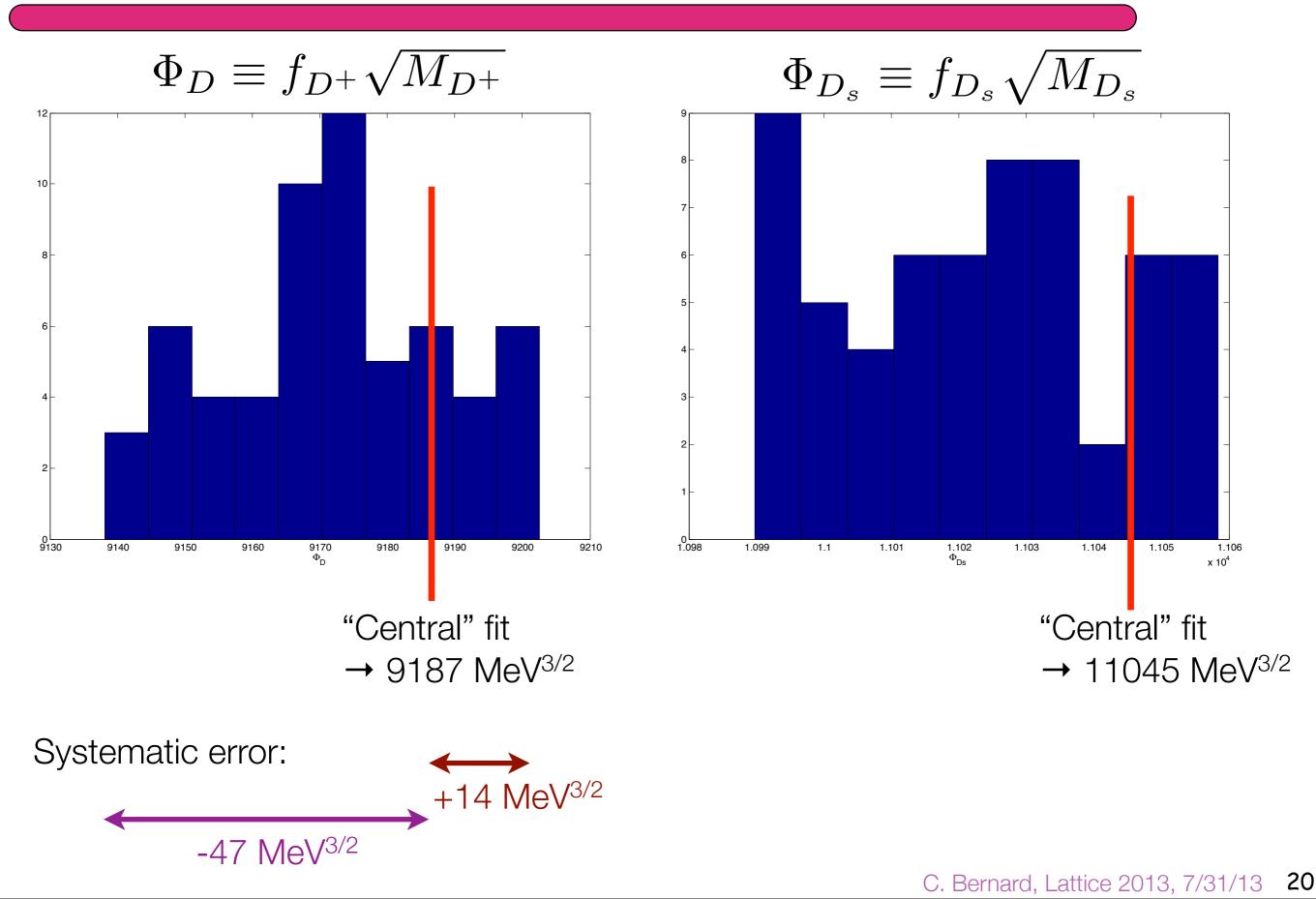


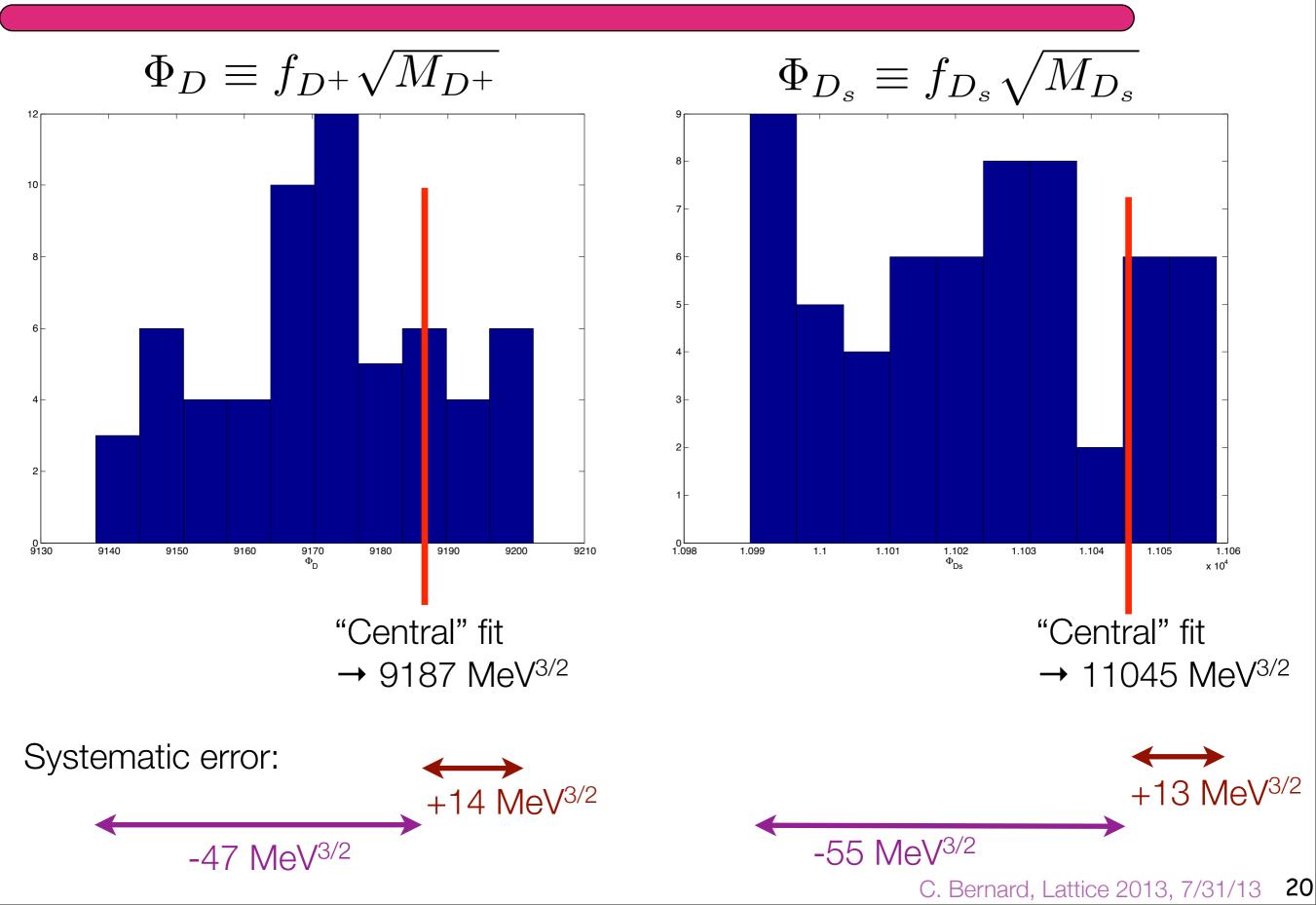
- data (adjusted for mistunings to physical masses)
- staggered chiral log contribution
- contribution from fit a-dependence (αa^2 , $\alpha^2 a^2$, a^4)

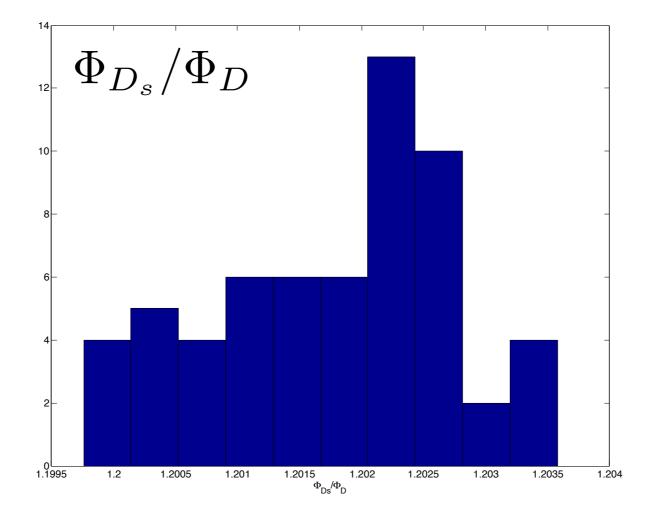

- clear competition of a² and a⁴ fit terms, needed for parabolic shape of data.
- total variation with a, as well as individual contributions to a-dependence, are ~ 2--3%.
- Scale dependence is different in physical-point analysis (Doug Toussaint's talk), which uses *f*_π for relative scale setting, but rough shape is similar.

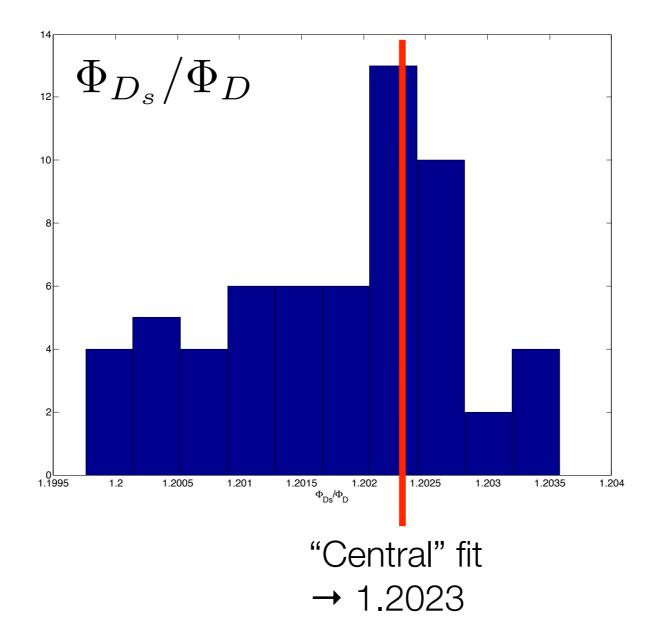

Discussion of Systematic Errors

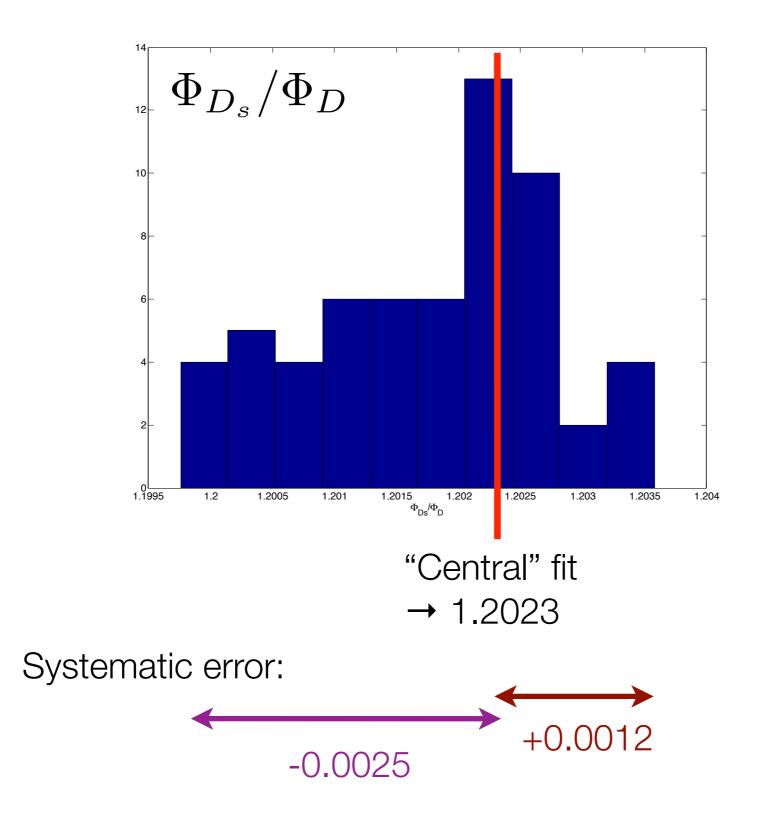
- For continuum extrapolation/chiral interpolation errors, use two methods:
 - By straightforward comparison with various continuum extrapolations of physical-mass ensemble results (Doug Toussaint's talk).
 - "Self-contained" error analysis:
 - Have 10 acceptable chiral fits (p>0.05), which:
 - keep or drop a=0.15 fm ensembles.
 - keep or drop $(a m_c)^4$ and $\alpha_s(a m_c)^2$ terms.
 - constrain higher order chiral terms and/or discretization terms with priors, or leave them unconstrained.
 - Have 6 versions of inputs (quark masses, f_{p4s} in physical units from f_{π}) from physical-mass ensemble results.
 - Histogram results of 60 composite analyses.

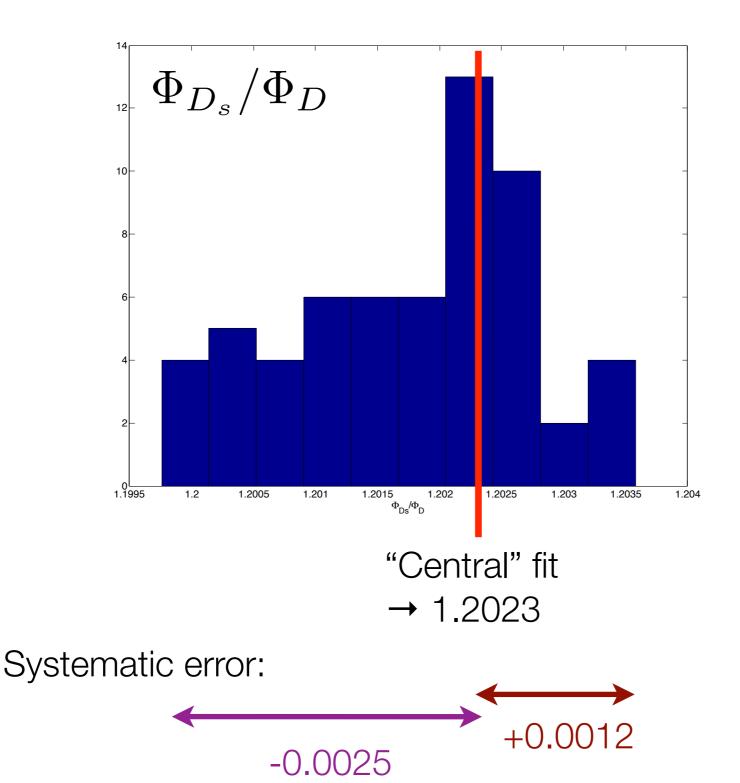


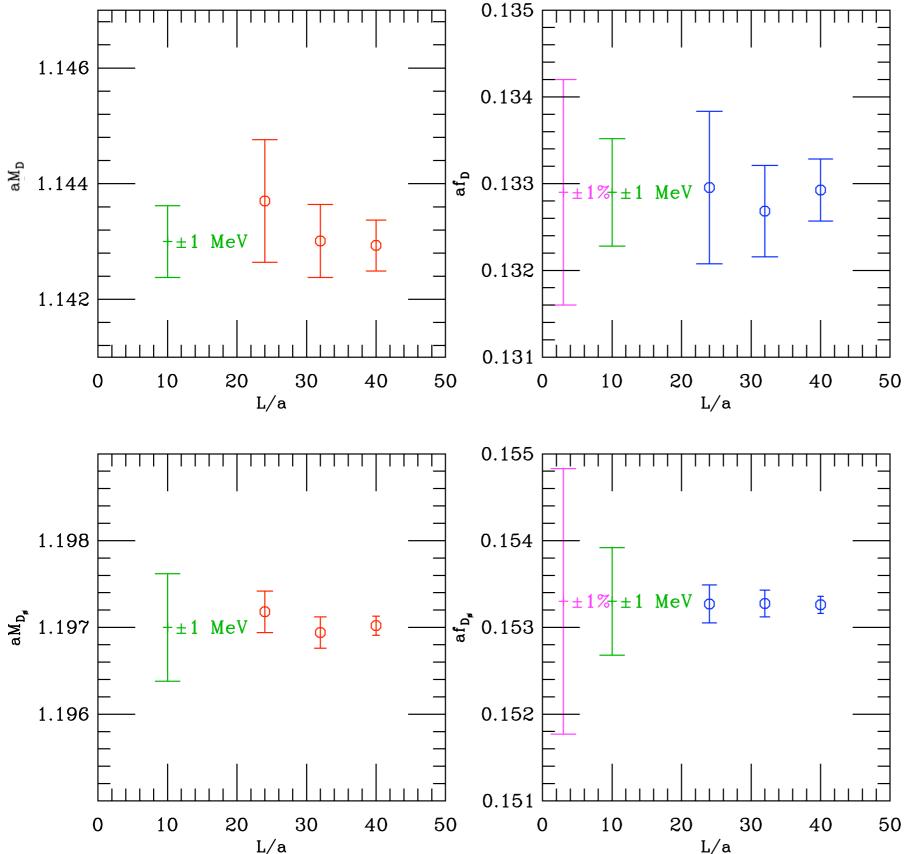

$$\Phi_{D_s} \equiv f_{D_s} \sqrt{M_{D_s}}$$











 Roughly speaking, the chiral fits to account for ~2/3 of the variance, while the inputs of scale and quark masses account for ~1/3.

Finite size effects

- "Direct" finite size effects on heavy-light decay constants and masses are negligible.
- But note that results here are in lattice units.
- Small but non-negligible finite-size effects enter from scale setting through f_π.

C. Bernard, Lattice 2013, 7/31/13

EM errors

- EM effects included in error are only the ones coming from light quark masses.
- Do not include effects on m_c estimate (i.e. haven't taken out EM effects from the D_s mass, used to set m_c).
 - This appears to be a not-insignificant source of error (especially for f_{Ds}/f_D).
 - Can be relatively easily improved with an expansion of ongoing MILC EM project.
- In addition, errors associated with matching complete theory to pure QCD are not included (would be relevant for comparing to experiment).
 - Gläßle and Bali, arXiv:1111.3958 and Davies, et al., PRD 82 (2010)
 114504 expect such errors are < 0.5%

Results

✦ Preliminary results, from "self-contained" chiral fit analysis only:

$$f_D = 212.5 \pm 0.5_{\text{stat}} + 0.3_{a^2 \text{ extrap}} \pm 0.2_{\text{FV}} \pm 0.0_{\text{EM}} \pm 0.3_{f_{\pi} \text{ expt}} \text{ MeV}$$

$$f_{D_s} = 248.9 \pm 0.2_{\text{stat}} + \frac{0.3}{-1.2}|_{a^2 \text{ extrap}} \pm 0.2_{\text{FV}} \pm 0.1_{\text{EM}} \pm 0.4_{f_{\pi} \text{ expt}} \text{ MeV}$$

 $f_{D_s}/f_D = 1.1717(20)_{\text{stat}} \binom{+12}{-24} a^2 \operatorname{extrap}(3)_{\text{FV}}(3)_{\text{EM}}$

 Preliminary results, including comparison with continuum extrapolation of physical ensembles results only (Doug Toussaint talk):

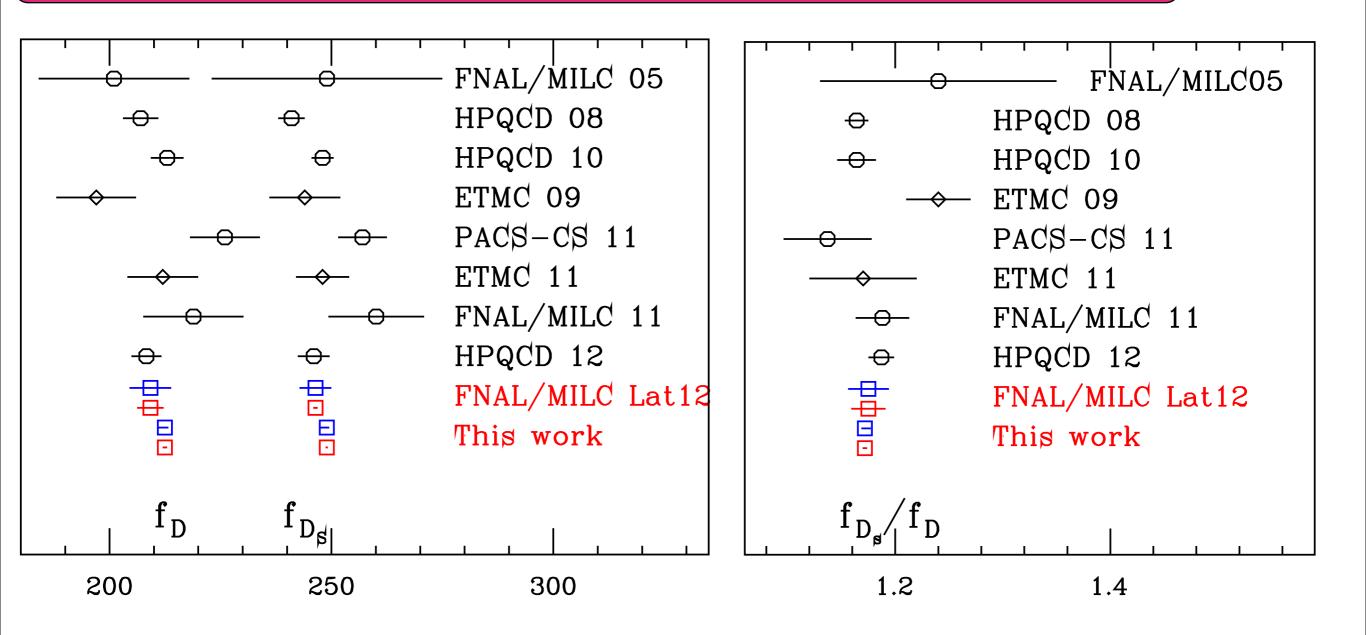
 $f_{D} = 212.5 \pm 0.5_{\text{stat}} \stackrel{+0.3}{_{-1.4}}|_{a^{2} \text{ extrap}} \pm 0.2_{\text{FV}} \pm 0.3_{\text{EM}} \pm 0.3_{f_{\pi} \text{ expt}} \text{ MeV}$ $f_{D_{s}} = 248.9 \pm 0.2_{\text{stat}} \stackrel{+0.3}{_{-1.5}}|_{a^{2} \text{ extrap}} \pm 0.2_{\text{FV}} \pm 0.1_{\text{EM}} \pm 0.4_{f_{\pi} \text{ expt}} \text{ MeV}$ $f_{D_{s}}/f_{D} = 1.1717(20)_{\text{stat}}(\stackrel{+52}{_{-24}})_{a^{2} \text{ extrap}}(4)_{\text{FV}}(5)_{\text{EM}}$

 For now, we've taken larger error values in each case to be conservative.

Results

Summary of our best current results (still preliminary):

$$f_D = 212.5 \pm 0.5_{\text{stat}} + 0.6_{-1.5}|_{\text{sys}} \text{ MeV}$$


$$f_{D_s} = 248.9 \pm 0.2_{\text{stat}} + 0.5_{-1.6}|_{\text{sys}} \text{ MeV}$$

$$f_{D_s}/f_D = 1.1717(20)_{\text{stat}} (^{+52}_{-25})_{\text{sys}}$$

In progress:

- finish 3 partial ensembles.
- chiral/continuum fits still need work:
 - Can we do with fewer parameters? Improve stability?
 - Understanding *a*-dependence better (esp. $\alpha_s(am_c)^2$, $(am_c)^4$ terms).
 - Choosing a more "central" central fit would be preferable, if one can be found that has comparable p value to current one and reasonable consistency with expectations of PT.
- Extending chiral-fit approach to light-light sector.

Compare to Previous Work

Red points have statistical error only; blue include systematic errors.