Topological Lattice Actions

I. Motivation

Probing universality in an extreme case

Testbed: non-linear σ -models

II. Quantum Mechanical Models (d = 1)

Are there still facets of universality ?

III. 2d O(3) Model

Step Scaling Function

Topological susceptibility

IV. 2d XY Model (or O(2) Model)

Is there a Berezinskii-Kosterlitz-Thouless (BKT) transition when vortices cost zero energy ?

A vortex-free phase transition, to be explored

Based on :

- [1] W.B., U. Gerber, M. Pepe and U.-J. Wiese, JHEP 1012 (2010) 020.
- [2] W.B., M. Bögli, F. Niedermayer, M. Pepe, F.G. Rejón-Barrera and U.-J. Wiese, JHEP 1303 (2013) 141.
- [3] W.B., U. Gerber and F.G. Rejón-Barrera, arXiv:1307.0485 [hep-lat].

I. Topological Lattice Actions

Usually we discretize some continuum Lagrangian, e.g.

$$\mathcal{L}(\Phi(x), \partial_{\mu}\Phi(x)) \rightarrow \mathcal{L}_{\text{lat}}(\Phi_x, \frac{1}{a}[\Phi_{x+a\hat{\mu}} - \Phi_x])$$

Universality : Different lattice formulations: **same universality class,** determined by *space-time dimension* and *symmetries of the order parameter.*

<u>Conditions</u>: locality, and of course correct classical continuum limit, $e.g. \quad \frac{1}{a} [\Phi_{x+a\hat{\mu}} - \Phi_x] \xrightarrow{a \to 0} \partial_{\mu} \Phi(x).$ "Goes without saying", does it ?

Counter-examples: lattice actions without <u>any</u> classical limit. Let's probe how far universality really reaches !

Surprise: Quantum continuum limit may still be correct, and such "absurd" lattice actions even provide practical benefits !

O(N) lattice models:

$$\vec{e}_x = (e_x^{(1)}, \dots, e_x^{(N)}), \quad |\vec{e}_x| = 1 \quad \forall x = na, \quad n \in \mathbb{Z}^d.$$

We consider d=1, 2 ,

and N = 2 (XY model, relevant for <u>superfluids</u>, superconductors, liquid crystals etc.) or N = 3 (Heisenberg model, describes ferromagnets, 2d: asympt. freedom \sim QCD).

For N = d + 1: topological sectors.

Simplest topological lattice action :

Constraint Action

Angle between any pair of nearest neighbor spins $<\delta$

$$S[\vec{e}] = \sum_{\langle x,y \rangle} s(\vec{e}_x, \vec{e}_y) \quad , \qquad s(\vec{e}_x, \vec{e}_y) = \begin{cases} 0 & \vec{e}_x \vec{e}_y > \cos \delta \\ +\infty & \text{otherwise} \end{cases}$$

Deformations of a configuration (within allowed set) do not cost any action \Rightarrow "topological lattice action" (\neq lattice actions with discrete derivatives)

No classical limit, no perturbative expansion

Continuum limit: $\delta \rightarrow 0$

For models with top. charges, $Q = \sum_{\langle x,y,\dots \rangle} q_{x,y,\dots}$ (q: top. charge density)

Q Suppressing Action

$$S[\vec{e}] = \lambda \sum_{\langle x, y, \dots \rangle} |q_{x, y, \dots}| , \qquad \lambda > 0 .$$

For 2d XY model: no top. sectors, but each plaquette has a vortex number, $v_{\Box} \in \{0, \pm 1\}$, which can be suppressed: $S[\vec{e}] = \lambda \sum_{\Box} |v_{\Box}|$.

We consider constraint actions, Q (or vortex) suppressing actions, and combinations.

All are topological lattice actions:

 $S[\vec{e}]$ is invariant under (most) small deformations of a configuration.

II. 1d O(2) model : the rotator

$$S[\phi] = \frac{I}{2} \int_0^\beta dt \; \dot{\varphi}(t)^2$$
 , periodic b.c. $\varphi(\beta) = \varphi(0)$

Scaling term	continuum	constraint action	Q suppressing action
$\frac{E_2 - E_0}{E_1 - E_0}$	4	$4\left(1+\frac{3}{5}\frac{a}{\xi}+\dots\right)$	$4\left(1-\frac{3}{2}\frac{a}{\xi}+\ldots\right)$
$\chi_t \xi = \frac{\langle Q^2 \rangle}{L(E_1 - E_0)}$	$\frac{1}{2\pi^2}$	$\frac{1}{2\pi^2} \left(1 - \frac{1}{5\frac{a}{\xi}} + \dots \right)$	$\frac{1}{2\pi^2} \left(1 + \frac{1}{2} \frac{a}{\xi} + \dots \right)$

Linear lattice artifacts are unusual for scalar models, but:

Correct continuum limit !

Although universality is only assumed in field theory, *i.e.* $d \ge 2$ (?)

φ(t)

III. The 2d O(3) Model

1. Continuum

$$S[\vec{e}] = \frac{1}{2g^2} \int d^2x \ \partial_\mu \vec{e} \ \partial_\mu \vec{e} \ , \quad Q[\vec{e}] = \frac{1}{8\pi} \int d^2x \ \epsilon_{\mu\nu} \vec{e} \left(\partial_\mu \vec{e} \ \partial_\nu \vec{e}\right) \in \mathbb{Z}$$

Schwarz inequality: $S[\vec{e}] \geq \frac{4\pi}{g^2} |Q[\vec{e}]|$

2. Lattice: Geometric def. of Q (Berg/Lüscher '81)

$$Q[\vec{e}] = \frac{1}{4\pi} \sum_{\langle x,y,z \rangle} A_{x,y,z}$$

 $\langle x,y,z\rangle$ triangles, decomposition of square lattice

 $A_{x,y,z}$: (minimal) oriented spherical triangle spanned by \vec{e}_x , \vec{e}_y , \vec{e}_z . Lattice actions:

Standard
$$S[\vec{e}] = -\frac{1}{g^2} \sum_{x,\mu} \vec{e}_x \vec{e}_{x+a\hat{\mu}}$$

Constraint $S[\vec{e}] = \sum_{x,\mu} s(\vec{e}_x, \vec{e}_{x+a\hat{\mu}}) , \ s(\vec{e}_x, \vec{e}_{x+a\hat{\mu}}) = \begin{cases} 0 & \vec{e}_x \vec{e}_{x+a\hat{\mu}} > \cos \delta \\ +\infty & \text{otherwise} \end{cases}$
 Q Suppressing $S[\vec{e}] = \lambda \sum_{\langle x,y,z \rangle} |A_{x,y,z}|$

Consider $L \times L$ lattices, ratio $u = L/\xi(L)$, and Step-2 Step Scaling Function (SSF) (Lüsch

(Lüscher/Weisz/Wolff '91)

 $\sigma(2, u) = 2L/\xi(2L)$

Continuum values are known,

 $\sigma(2, u = 1.0595) = 1.26121$

(Balog/Niedermayer/Weisz '09)

Must be reproduced in continuum extrapolation of simulation results with any lattice action in the right universality class.

High precision thanks to **cluster algorithm** !

Extrapolation: $\Sigma(2, u, a/L) = \sigma(2, u) + \frac{a^2}{L^2} \left(c_1 \ln^3 \frac{a}{L} + c_2 \ln^2 \frac{a}{L} + \dots \right)$

Constraint Action: now **same** form of **artifacts**, following Symanzik's theory, and **scales better** than Standard and Improved Actions

(data from Balog/Niedermayer/Weisz '10)

Top. actions (constraint and Q suppressing [1]) : correct cont. limit!

Topological susceptibility : $\chi_t \doteq \frac{1}{V} \langle Q^2 \rangle$

"Scaling term" $\chi_t \xi^2$ diverges in cont. limit (small "dislocations" not sufficiently suppressed) Semi-classical: $\chi_t \xi^2 \propto (\xi/a)^p$, $p \simeq 0.9$ (Lüscher '82)

"Classically perfect action" eliminates dislocations $\rightarrow \underline{log}$ divergences (Blatter/Burkhalter/Hasenfratz/Niedermayer '96)

How about top. actions ?

E.g. Constraint Action does not suppress dislocations at all ...

We fix $L/\xi_2 = 4$ and consider (ξ_2 : 2nd moment correlation length)

16
$$\chi_t \xi_2^2 = 16 \frac{\langle Q^2 \rangle}{L^2} \left(\frac{L}{4}\right)^2 = \langle Q^2 \rangle$$

as a function of $L/a = 4 \xi_2/a$:

Divergence in the cont. limit is **only logarithmic**, both for constraint action (left, dislocations **not** suppressed) and Q suppressing action (right).

Therefore the 2d O(3) model is sometimes considered "ill",

but correlation $\langle q(x)q(y)\rangle$ at $x \neq y$ is finite [1].

Conclusion for the 2d O(3) model

Top. lattice actions: no classical limit, no perturbative expansion, in part: violation of Schwarz ineq., <u>but</u> correct quantum cont. limit !

On quantum level, universality is powerful!

Symanzik's theory (cont. theory plus all possible lattice terms) captures artifacts in field theory (not in d = 1).

"Tree level impaired", but very good scaling behavior — can be further improved by combining standard coupling and constraint (Bögli et al. '12)

 $\chi_t \xi^2$ diverges just logarithmically, even if dislocations cost zero action. Still, $\langle q(x)q(y)\rangle|_{x\neq y}$ is a sensible top. quantity. (\rightarrow study of θ -vacua, de Forcrand/Pepe/Wiese '12)

IV. The 2d XY Model (or O(2) Model)

$$\vec{e}_x = (\cos \varphi_x, \sin \varphi_x) \in S^1$$

$$\Delta \varphi_{x,x+a\hat{\mu}} := \varphi_x - \varphi_{x+a\hat{\mu}} \mod 2\pi \in (-\pi,\pi]$$

Standard action: (Berezinskii '70, '71, Kosterlitz/Thouless '73, BKT)

$$S[\vec{e}] = \beta \sum_{x,\mu} (1 - \vec{e}_x \vec{e}_{x+a\hat{\mu}}) = \beta \sum_{x,\mu} (1 - \cos \Delta \varphi_{x,x+a\hat{\mu}})$$

BKT transition : essential phase transition (order ∞)

$$\xi(T \gtrsim T_{\rm c}) \propto \exp\left(\frac{{\rm const.}}{(T - T_{\rm c})^{1/2}}\right) , \quad aT_{\rm c} = a/\beta_{\rm c} \simeq 1.1199(1)$$

(Hasenbusch '05)

No global top. charge, but each plaquette \Box (corners $x_1 \dots x_4$) has a **vortex number:** (with periodic b.c.: sum = 0)

$$v_{\Box} = \frac{1}{2\pi} (\Delta \varphi_{x_1, x_2} + \Delta \varphi_{x_2, x_3} + \Delta \varphi_{x_3, x_4} + \Delta \varphi_{x_4, x_1}) \in \{0, \pm 1\}, \sum_{\Box} v_{\Box} = 0$$

BKT transition: $(T = 1/\beta : \text{temperature})$

- $T > T_c$: isolated vortices condense, disorder the system, massive
- $T < T_c$: bound vortex-anti-vortex pairs, long-range "order", massless
- $T_{\rm c}$ was estimated from energy cost for isolated vortices (or anti-vortices).

Topological lattice actions:

- Constraint Action : $|\Delta \varphi_{x,x+a\hat{\mu}}| < \delta \qquad \forall x,\mu$
- Vortex Suppressing Action : $S[\vec{e}] = \lambda \sum_{\Box} |v_{\Box}|$

New type of *cluster algorithm* still applies at $\lambda > 0$. At fixed λ : $\delta_{\rm c}(\lambda = 0) = 1.7752(6), \ \delta_{\rm c}(\lambda = 2) = 1.8665(8), \ \delta_{\rm c}(\lambda = 4) = 1.9361(8)$

$$\xi(\delta \gtrsim \delta_{\rm c}) \propto \exp\left(\frac{{\rm const.}}{(\delta - \delta_{\rm c})^{1/2}}\right)$$

Again transition of the BKT type, although at $\lambda = 0$ isolated (anti-)vortices cost zero energy !

Further evidence for BKT behavior:

1. Step-2 SSF: Continuum: $\sigma(2, u := 2L/\xi = 3.0038) = 4.3895$

Standard action, cont. extrapolation: 4.40(2) (Balog/Knechtli/Korzec/Wolff '03)

 $\Sigma(2, u, a/L) = \sigma(2, u) + \frac{c}{[\ln(\xi/a) + U]^2} + \mathcal{O}(\ln^{-4}(\xi/a))$ Top. lattice actions are consistent. Excellent scaling for Constraint Action! $c \simeq 2.6$ was claimed to be universal, but c < 0 for top. actions

2. Dimensionless Helicity Modulus $\overline{\Upsilon}$

Twisted boundary conditions; $p(\alpha)$: probability for twist angle α

$$\bar{\Upsilon} = -\frac{\partial^2}{\partial^2 \alpha} \ln p(\alpha)|_{\alpha=0}$$

At BKT transition

$$\bar{\Upsilon}_{\rm c} = \frac{2}{\pi}$$

(Nelson/Kosterlitz '77)

Simulate with dynamical boundary conditions, extract $\bar{\Upsilon}_{\rm c}$ from histogram for $\alpha.$

• Standard action: $\bar{\Upsilon}_{\rm c}(L=2048)$: 5.6 % off (Hasenbusch '05)

- Step action: $\bar{\Upsilon}_{\rm c}(L=256)$: 4.1 % off (Olsson/Holme '01)
- Constraint action: $\overline{\Upsilon}_{c}(L=8)$: 2.8 % off, $L \ge 64$: correct!

Incredibly small finite size effects.

One of the best numerical evidences ever for a BKT transition !

Vortex-anti-vortex pair (un)binding mechanism is still valid:

Left: density of "free vortices" (no anti-vortex within distance r, or v.v.) Right: vorticity correlation function $C(r) = \langle v_{\Box,x}v_{\Box,x+r} \rangle|_{|v_{\Box,x}|=1}$ (Un)binding as a purely combinatorial effect, without any Boltzmann factor! $\delta = \pi$: Pure Vortex Suppressing Action, upper axis in phase diagram: good fit with (unexpected) ansatz

Conclusions for the 2d XY Model

 δ -constraint and $\lambda = 0$ or finite λ : Phase transition at $\delta_c(\lambda)$, consistent with BKT behavior

SSF and $\chi_m \rightarrow \eta_c$ [2]: large L extrapolation compatible with BKT prediction.

 $\overline{\Upsilon}(\delta)$: gap at δ_c [3]. BKT prediction $\overline{\Upsilon}_c = 2/\pi$ confirmed with unprecedented precision: correct even without large-*L* extrapolation!

One of the most compelling numerical evidences for a BKT transition.

Vortex-anti-vortex pair (un)binding mechanism: still applies, even without any energy requirement for free vortices.

 $\lambda \to \infty$:

new transition in this model, <u>not</u> of BKT type, to be explored ...

Appendix A: Related actions in the 2d XY literature:

• Step Action : $s_{x,x+a\hat{\mu}} = \begin{cases} 0 & \Delta \varphi_{x,\mu} < \pi/2 \\ S_0 & \text{otherwise} \end{cases}$

BKT transition at critical S_0

(Kenna/Irving '97, Olsson/Holme '01)

 $S_0 \rightarrow \infty$: Constraint action at $\delta = \pi/2$, no vortices

• Extended XY Model

(Domany/Schick/Swendsen '84)

$$S[\varphi] = \beta \sum_{x,\mu} \left[1 - \cos^{2q} (\Delta \varphi_{x,\mu}/2) \right]$$

 $\begin{array}{l} q=1\sim {\rm Standard\ action;\ increasing\ q:\ stronger\ vortex\ suppression.}\\ q\gtrsim 8\ {\rm BKT\ replaced\ by\ 1^{st}\ order\ transition,\ still\ driven\ by\ vortices}\\ {\rm (analytic:\ van\ Enter/Shlosman\ '02,\ numeric:\ e.g.\ Ota/Ota\ '06,\ Shinha/Roy\ '10)}\\ {\rm Not\ observed\ in\ our\ phase\ diagram,\ but\ new\ transition\ at\ \lambda\to\infty.} \end{array}$

Appendix B: Second Moment Correlation Length ξ_2

(Connected) correlation function (or 2-point function):

$$G(x-y) \doteq \langle \vec{e}_x \vec{e}_y \rangle$$
, $\tilde{G}(p) = \sum_x G(x) \exp(ipx)$

 ξ_2 is given by the magnetic susceptibility $\chi_m = \tilde{G}(0)$, and by \tilde{G} at the minimal non-zero momentum, $\phi \doteq \tilde{G}(2\pi/L, 0)$:

$$\xi_2 \doteq \left(\frac{\chi_{\rm m} - \phi}{4\phi \sin^2(\pi/L)}\right)^{1/2}$$

Can be measured conveniently without fit to exp. decay.

At large L: $\xi_2 \simeq \xi$ (up to < 0.1 %) (Caracciolo/Edwards/Pelissetto/Sokal '95)

Appendix C: Correlation of top. charge density, $\langle q(0)q(x)\rangle$, with

$$q(x) = \frac{1}{8\pi} \epsilon_{\mu\nu} \vec{e}(x) \cdot \left[\partial_{\mu} \vec{e}(x) \times \partial_{\nu} \vec{e}(x)\right]$$

does have a finite cont. limit (at $x \neq 0$) ! (Balog/Niedermayer '97) At x = 0: cancellation of power divergences, log. divergence persists. Similar in QCD with chiral quarks, q defined with a chiral lattice Dirac operator. (Giusti/Rossi/Testa '04, Lüscher '04)

Point-to-time-slice correlator: $(x = (x_1, x_2))$

$$G(x_2) = \int_0^L dx_1 \, \langle q(0)q(x) \rangle$$

$G(x_2)\xi^3$ vs. x_2/ξ for **Constraint Action** (cluster algorithm)

Data are continuum extrapolated. Curve predicted by Balog/Niedermayer '97