
Topological Lattice Actions

I. Motivation

Probing universality in an extreme case

Testbed: non-linear σ-models

II. Quantum Mechanical Models (d = 1)

Are there still facets of universality ?

III. 2d O(3) Model

Step Scaling Function

Topological susceptibility
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IV. 2d XY Model ( or O(2) Model )

Is there a Berezinskii-Kosterlitz-Thouless (BKT) transition
when vortices cost zero energy ?

A vortex-free phase transition, to be explored
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I. Topological Lattice Actions

Usually we discretize some continuum Lagrangian, e.g.

L(Φ(x), ∂µΦ(x)) → Llat(Φx,
1

a
[Φx+aµ̂ − Φx])

Universality : Different lattice formulations: same universality class,
determined by space-time dimension and symmetries of the order parameter.

Conditions : locality, and of course correct classical continuum limit,

e.g. 1
a[Φx+aµ̂ − Φx]

a→0
︷︸︸︷
−→ ∂µΦ(x). “Goes without saying”, does it ?

Counter-examples: lattice actions without any classical limit.
Let’s probe how far universality really reaches !

Surprise: Quantum continuum limit may still be correct, and such
“absurd” lattice actions even provide practical benefits !
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O(N) lattice models:

~ex = (e(1)x , . . . , e(N)
x ) , |~ex| = 1 ∀x = na , n ∈ ZZd .

We consider d = 1, 2 ,

and N = 2 (XY model, relevant for superfluids, superconductors, liquid crystals etc.)

or N = 3 (Heisenberg model, describes ferromagnets, 2d: asympt. freedom ∼ QCD).

For N = d+ 1 : topological sectors.
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Simplest topological lattice action :

Constraint Action

Angle between any pair of nearest neighbor spins < δ

S[~e ] =
∑

〈x,y〉

s(~ex, ~ey) , s(~ex, ~ey) =

{
0 ~ex~ey > cos δ

+∞ otherwise

Deformations of a configuration (within allowed set) do not cost any action
⇒ “topological lattice action” ( 6= lattice actions with discrete derivatives)

No classical limit, no perturbative expansion

Continuum limit: δ → 0
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For models with top. charges, Q =
∑

〈x,y,... 〉 qx,y,... (q: top. charge density)

Q Suppressing Action

S[~e ] = λ
∑

〈x,y,... 〉

|qx,y,...| , λ > 0 .

For 2d XY model: no top. sectors, but each plaquette has a vortex
number, v� ∈ {0,±1}, which can be suppressed: S[~e ] = λ

∑

� |v�| .

We consider constraint actions, Q (or vortex) suppressing actions,
and combinations.

All are topological lattice actions:

S[~e ] is invariant under (most) small deformations of a configuration.
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II. 1d O(2) model : the rotator
ϕ (t)

S[φ] = I
2

∫ β

0
dt ϕ̇(t)2 , periodic b.c. ϕ(β) = ϕ(0)

Scaling term continuum constraint action Q suppressing action

E2−E0
E1−E0

4 4
(

1 + 3
5
a
ξ + . . .

)

4
(

1− 3
2
a
ξ + . . .

)

χt ξ = 〈Q2〉
L(E1−E0)

1
2π2

1
2π2

(

1− 1
5
a
ξ + . . .

)
1

2π2

(

1 + 1
2
a
ξ + . . .

)

Linear lattice artifacts are unusual for scalar models, but:

Correct continuum limit !

Although universality is only assumed in field theory, i.e. d ≥ 2 (?)
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III. The 2d O(3) Model

1. Continuum

S[~e ] =
1

2g2

∫

d2x ∂µ~e ∂µ~e , Q[~e ] =
1

8π

∫

d2x ǫµν ~e (∂µ~e ∂ν~e) ∈ ZZ

Schwarz inequality: S[~e ] ≥ 4π
g2

|Q[~e ]|

2. Lattice: Geometric def. of Q (Berg/Lüscher ’81)

Q[~e ] =
1

4π

∑

〈x,y,z〉

Ax,y,z

〈x, y, z〉 triangles, decomposition of square lattice
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e

ex

ey

A
z

Ax,y,z : (minimal) oriented spherical triangle spanned by ~ex, ~ey, ~ez.

Lattice actions:

Standard S[~e ] = −
1

g2

∑

x,µ

~ex~ex+aµ̂

Constraint S[~e ] =
∑

x,µ

s(~ex, ~ex+aµ̂) , s(~ex, ~ex+aµ̂) =

{

0 ~ex~ex+aµ̂ > cos δ

+∞ otherwise

Q Suppressing S[~e ] = λ
∑

〈x,y,z〉

|Ax,y,z|
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Consider L× L lattices, ratio u = L/ξ(L) , and

Step-2 Step Scaling Function (SSF) (Lüscher/Weisz/Wolff ’91)

σ(2, u) = 2L/ξ(2L)

Continuum values are known,

σ(2, u = 1.0595) = 1.26121

(Balog/Niedermayer/Weisz ’09)

Must be reproduced in continuum extrapolation of simulation results
with any lattice action in the right universality class.

High precision thanks to cluster algorithm !
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Extrapolation: Σ(2, u, a/L) = σ(2, u) + a2

L2

(

c1 ln
3 a
L + c2 ln

2 a
L + . . .

)

Constraint Action: now same form of artifacts, following Symanzik’s
theory, and scales better than Standard and Improved Actions

(data from Balog/Niedermayer/Weisz ’10)

Top. actions (constraint and Q suppressing [1]) : correct cont. limit!
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Topological susceptibility : χt
.
= 1

V 〈Q2〉

“Scaling term” χt ξ
2 diverges in cont. limit

(small “dislocations” not sufficiently suppressed)

Semi-classical: χt ξ
2 ∝ (ξ/a)p, p ≃ 0.9 (Lüscher ’82)

“Classically perfect action” eliminates dislocations → log divergences
(Blatter/Burkhalter/Hasenfratz/Niedermayer ’96)

How about top. actions ?

E.g. Constraint Action does not suppress dislocations at all . . .

We fix L/ξ2 = 4 and consider (ξ2 : 2nd moment correlation length)

16 χt ξ
2
2 = 16

〈Q2〉

L2

(L

4

)2

= 〈Q2〉

as a function of L/a = 4 ξ2/a :
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Divergence in the cont. limit is only logarithmic, both for constraint action
(left, dislocations not suppressed) and Q suppressing action (right).

Therefore the 2d O(3) model is sometimes considered “ill”,

but correlation 〈q(x)q(y)〉 at x 6= y is finite [1].
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Conclusion for the 2d O(3) model

Top. lattice actions: no classical limit, no perturbative expansion,

in part: violation of Schwarz ineq., but correct quantum cont. limit !

On quantum level, universality is powerful!

Symanzik’s theory (cont. theory plus all possible lattice terms) captures
artifacts in field theory (not in d = 1).

“Tree level impaired”, but very good scaling behavior — can be further
improved by combining standard coupling and constraint (Bögli et al. ’12)

χt ξ
2 diverges just logarithmically, even if dislocations cost zero action.

Still, 〈q(x)q(y)〉|x 6=y is a sensible top. quantity.
(→ study of θ-vacua, de Forcrand/Pepe/Wiese ’12)
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IV. The 2d XY Model (or O(2) Model)

~ex = (cosϕx, sinϕx) ∈ S1

∆ϕx,x+aµ̂ := ϕx − ϕx+aµ̂ mod 2π ∈ (−π, π]

Standard action: (Berezinskii ’70, ’71, Kosterlitz/Thouless ’73, BKT)

S[~e ] = β
∑

x,µ

(1− ~ex~ex+aµ̂) = β
∑

x,µ

(1− cos∆ϕx,x+aµ̂)

BKT transition : essential phase transition (order ∞)

ξ(T & Tc) ∝ exp

(
const.

(T − Tc)1/2

)

, aTc = a/βc ≃ 1.1199(1)

(Hasenbusch ’05)

15



No global top. charge, but each plaquette � (corners x1 . . . x4) has a

vortex number: (with periodic b.c.: sum = 0)

v� =
1

2π
(∆ϕx1,x2 +∆ϕx2,x3 +∆ϕx3,x4 +∆ϕx4,x1) ∈ {0,±1} ,

∑

�

v� = 0

BKT transition: (T = 1/β : temperature)

• T > Tc : isolated vortices condense, disorder the system, massive

• T < Tc : bound vortex–anti-vortex pairs, long-range “order”, massless

Tc was estimated from energy cost for isolated vortices (or anti-vortices).

Topological lattice actions:

• Constraint Action : |∆ϕx,x+aµ̂| < δ ∀x, µ

• Vortex Suppressing Action : S[~e ] = λ
∑

� |v�|
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New type of cluster algorithm still applies at λ > 0. At fixed λ :
δc(λ = 0) = 1.7752(6) , δc(λ = 2) = 1.8665(8) , δc(λ = 4) = 1.9361(8)

ξ(δ & δc) ∝ exp

(
const.

(δ − δc)1/2

)

Again transition of the BKT type, although at λ = 0 isolated (anti-)vortices
cost zero energy !

 0

π/2

π

 0  2 4 ∞

δ

λ

massive phase

massless phase

δ < π/2 or λ → +∞ : no vortices
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Further evidence for BKT behavior:

1. Step-2 SSF: Continuum: σ(2, u := 2L/ξ = 3.0038) = 4.3895

Standard action, cont. extrapolation: 4.40(2) (Balog/Knechtli/Korzec/Wolff ’03)
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standard action

λ=0
λ=2
λ=4

Σ(2, u, a/L) = σ(2, u) + c
[ln(ξ/a)+U ]2

+O(ln−4(ξ/a))

Top. lattice actions are consistent. Excellent scaling for Constraint Action!

c ≃ 2.6 was claimed to be universal, but c < 0 for top. actions
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2. Dimensionless Helicity Modulus Ῡ

Twisted boundary conditions; p(α) : probability for twist angle α

Ῡ = −
∂2

∂2α
ln p(α)|α=0

At BKT transition

Ῡc =
2

π
(Nelson/Kosterlitz ’77)

Simulate with dynamical boundary conditions,

extract Ῡc from histogram for α.
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• Standard action: Ῡc(L = 2048) : 5.6 % off (Hasenbusch ’05)

• Step action: Ῡc(L = 256) : 4.1 % off (Olsson/Holme ’01)

• Constraint action: Ῡc(L = 8) : 2.8 % off, L ≥ 64 : correct!

Incredibly small finite size effects.

One of the best numerical evidences ever for a BKT transition !
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Vortex–anti-vortex pair (un)binding mechanism is still valid:
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Left: density of “free vortices” (no anti-vortex within distance r, or v.v.)

Right: vorticity correlation function C(r) = 〈v�,xv�,x+r〉||v�,x|=1

(Un)binding as a purely combinatorial effect, without any Boltzmann factor!
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δ = π : Pure Vortex Suppressing Action, upper axis in phase diagram:

good fit with (unexpected) ansatz

ξ(λ) = c0 exp(c1 λ) ⇒ λc = +∞
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Step-2 SSF has extrapolation σ(2, u = 6)fit = 9.47(1)
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BKT value: σ(2, u = 6)BKT = 11.53 (Balog ’12)

NO BKT transition, consistent with vortex picture

(vortex–anti-vortex pair formation drives BKT transition, here absent).
New transition, overlooked in (tremendous) literature on this model.
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Conclusions for the 2d XY Model

δ-constraint and λ = 0 or finite λ :
Phase transition at δc(λ), consistent with BKT behavior

SSF and χm → ηc [2]:
large L extrapolation compatible with BKT prediction.

Ῡ(δ) : gap at δc [3]. BKT prediction Ῡc = 2/π confirmed with
unprecedented precision: correct even without large-L extrapolation!

One of the most compelling numerical evidences for a BKT transition.

Vortex–anti-vortex pair (un)binding mechanism:
still applies, even without any energy requirement for free vortices.

λ → ∞ :

new transition in this model, not of BKT type, to be explored . . .
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Appendix A: Related actions in the 2d XY literature:

• Step Action : sx,x+aµ̂ =

{
0 ∆ϕx,µ < π/2
S0 otherwise

BKT transition at critical S0

(Kenna/Irving ’97, Olsson/Holme ’01)

S0 → ∞ : Constraint action at δ = π/2, no vortices

• Extended XY Model (Domany/Schick/Swendsen ’84)

S[ϕ] = β
∑

x,µ

[

1− cos2q(∆ϕx,µ/2)
]

q = 1 ∼ Standard action; increasing q: stronger vortex suppression.

q & 8 BKT replaced by 1st order transition, still driven by vortices
(analytic: van Enter/Shlosman ’02, numeric: e.g. Ota/Ota ’06, Shinha/Roy ’10)

Not observed in our phase diagram, but new transition at λ → ∞.
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Appendix B: Second Moment Correlation Length ξ2

(Connected) correlation function (or 2-point function):

G(x− y)
.
= 〈~ex~ey〉 , G̃(p) =

∑

x

G(x) exp(ipx)

ξ2 is given by the magnetic susceptibility χm = G̃(0), and by G̃ at the
minimal non-zero momentum, φ

.
= G̃(2π/L, 0) :

ξ2
.
=

(
χm − φ

4φ sin2(π/L)

)1/2

Can be measured conveniently without fit to exp. decay.

At large L: ξ2 ≃ ξ (up to < 0.1 %) (Caracciolo/Edwards/Pelissetto/Sokal ’95)
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Appendix C: Correlation of top. charge density, 〈q(0)q(x)〉, with

q(x) =
1

8π
ǫµν ~e(x) · [∂µ~e(x)× ∂ν~e(x)]

does have a finite cont. limit (at x 6= 0) ! (Balog/Niedermayer ’97)

At x = 0: cancellation of power divergences, log. divergence persists.

Similar in QCD with chiral quarks, q defined with a chiral lattice Dirac
operator. (Giusti/Rossi/Testa ’04, Lüscher ’04)

Point–to–time-slice correlator: (x = (x1, x2))

G(x2) =

∫ L

0

dx1 〈q(0)q(x)〉
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G(x2)ξ
3 vs. x2/ξ for Constraint Action (cluster algorithm)
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Data are continuum extrapolated. Curve predicted by Balog/Niedermayer ’97
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